Class 28 - **CONSTRAINED VS. UNCONSTRAINED NONLINEAR PROGRAMMING**

Lagrangean constrained optimization

Figure 1 - Roping off an area

\[
\text{max } f(b, c) = A^2 = s (s - a) (s - b) (s - c) \\
\text{s.t. } g_1(b, c) = a + b + c - 2s = 0
\]

(Notice \(f(b, c)\) is a concave function and our constraint is in the form \(g_i(x) = 0\), rather than \(g_i(x) = b_i\).)

\[
\text{max } L(b, c, \lambda_1) = f(b, c) - \lambda_1 g_1(b, c) \\
\quad = s (s - a) (s - b) (s - c) - \lambda_1 (a + b + c - 2s)
\]

Instead of \(-\lambda_1\), it will be \(+\lambda_1\) for minimizing a convex function.

\[
L'(b) = 0 \text{ yields } -s (s - a) (s - c) - \lambda_1 = 0 \\
L'(c) = 0 \text{ yields } -s (s - a) (s - b) - \lambda_1 = 0 \\
L'(_\lambda_1) = 0 \text{ yields } a + b + c - 2s = 0.
\]

Figure 2 - Roping off an optimal area

Solving for unknowns \(b, c, \lambda_1\),
\[
\begin{align*}
 b &= s - a/2 \\
 c &= s - a/2 \\
 \lambda_1 &= -a s (s - a) / 2.
\end{align*}
\]

EXAMPLE:

Suppose a rope is 100 feet long, \(s = 50\), \(a = 25\), \(b = c = 50 - 25/2 = 37.5\), and \(\lambda_1 = - (37.5) (50) (50 - 25)/2 = -23,437.5\)

Remember \(\partial f / \partial s = \partial A^2 / \partial s\), which explains the large value for \(\lambda_1\). Thus a movement of the pole to the left or the right of the existing position by one foot of
rope length will decrease the enclosed area by \((23,437.5)^{\frac{1}{2}} = 153.09\) sq. ft. / ft.
Finally, \(A^2 = 50 (50 - 25) (50 - 37.5) (50 - 37.5) = 1.9531 \times 10^5\), or \(A^* = 441.94\) sq. ft.

\(\lambda_1\) is the dual variable, showing the effect of changing the RHS (in this case 0) by \(+\Delta\) or \(-\Delta\). If \(-\Delta\), the rope is lengthened, and the area of the triangle will increase.

On the other hand, if \(+\Delta\), the rope is shortened, and the area will decrease instead. The amount of increase or decrease is \(\lambda_1 \Delta\). Similar interpretation can be made for the distance between the trees \(a\).

Method of steepest ascent

\[
\text{max/min } f (x) \\
\mathbf{x} \in \mathbb{R}^n
\]
(i.e., \(\mathbf{x}\) is in an \(n\)-dimensional Euclidean space.)

Figure 3 - Example search

General algorithm

Step 1. Select a starting point \(\mathbf{x}^k = \mathbf{x}^0 = (x_1^0, x_2^0, \ldots, x_n^0)^T\) and set \(k = 0\).

Step 2. Find a direction to move \(d^k = \nabla f (\mathbf{x}^k)\), which will improve (increase/decrease) the function at iteration \(k\), where \(d^k = (d_1^k, d_2^k, \ldots, d_n^k)^T\).

Step 3. Move a distance \(t^k\) in the direction \(d^k\) to a new point \(\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \mathbf{d}^k\), where \(t^k\) is the nonnegative step size at iteration \(k\), to be determined by

a) line search (golden section for example), or

b) analytic technique (parametric in \(t\)).

Step 4. Check for local optimality, e.g.,

\[
\frac{\partial f}{\partial x_j} \bigg|_{\mathbf{x} = \mathbf{x}^k} < \epsilon \quad j = 1, 2, \ldots, n. \tag{1}
\]
If stopping criteria are not met, \(k \leq k + 1 \), go to step 2.

Example

\[
\text{max } f(x) = 2x_1 x_2 + 2x_2 - x_1^2 - 2x_2^2
\]

\[
d_1 = f'(x_1) = 2x_2 - 2x_1
\]

\[
d_2 = f'(x_2) = 2x_1 + 2 - 4x_2
\]

\[
d^0 = (d_1^0, d_2^0) = \nabla f(x^0) = \nabla f(0, 0) = \left[f_{x_1}(x_1 = 0, x_2 = 0), f_{x_2}(x_1 = 0, x_2 = 0) \right] = (0, 2).
\]

For \(k = 0 \), set \(x_1^1 = 0 + t(0) = 0, \ x_2^1 = 0 + t(2) = 2t \).

\[
f(x^1) = f[x^0 + t \nabla f(x^0)] = f(0, 2t) = 2(0)(2t) + 2(2t) - (0)^2 - 2(2t)^2 = 4t - 8t^2
\]

\[
t^* = 1/4
\]

\[
x^1 = (0, 0) + 1/4 (0, 2) = (0, \frac{1}{2}).
\]

Since \(d_1 = (2)(\frac{1}{2}) - (2)(0) = 1 \), it is clear that more iterations are necessary.

Note on “Constrained Optimization:”

Referring to the “Example search” Figure, should the constraint \(x_1 = x_2 \) be imposed, the global optimum would have been on \(x^* \) instead of \(x^{**} \).

Another Bonus Pre-test Review (8% Points):

Write and fully debug the attached C program to implement the “Method of steepest ascent” algorithm. Demonstrate its is working by replicating the problem worked out in Section 12.5 of H&L (2010).

Due date: Tuesday 5/10/11, 12:00 noon.
EXERCISE
For roping off an area, repeat the above calculation for a rope of 200 ft.
Roping off an area

Tree 1

Movable pole

Tree 2

a

b

c
Roping off an optimal area

Movable pole

Tree 1

Tree 2

\[
b \quad c
\]

\[
a
\]
Example search
/* Steepest descent */

#include <stdio.h>
#include <math.h>

int COUNT = 0;

float F(float, float);
float GradX (float, float);
float GradY(float, float);

int main()
{
 float a, best_x;
 float best_y, best_f;
 float x;
 float y;
 float d_x;
 float d_y;
 float delta;
 float eps;
 float z;

 int i;
 int j;
 int k;

 //start at 3,2
 best_x = 3.0;
 best_y = 2.0;
 best_f = F(best_x, best_y);

 //step size of 5
 delta = 5.0;

 //our acceptance step (acceptance - step < eps)
 eps = 0.01;
 k = 0;

 //we reduce delta until we reach a value less then our epsilon
 while (delta > eps)
 {
 k++;
 printf ("n---------------------\n");
 printf (" STEP ITERATION %d\n", k);
printf("-------------------\n");

//compute gradient
d_x = GradX(best_x, best_y);
d_y = GradY(best_x, best_y);

printf("Delta is: \nGradient is (%f,%f) from (%f,%f) opt is %f\n",
delta, d_x, d_y, best_x, best_y, best_f);
a = (delta*delta)/(d_x*d_x + d_y*d_y);
a = (float)sqrt((double)a);
printf("SCALE: %f*2/(%f*2 + %f*2) = %f\n", delta,d_x,d_y,a);

x = best_x - d_x*a;
y = best_y - d_y*a;
z = F(x, y);

printf("mew point (%f%f) has f-%f

", x, y, z);
if (z > best_f)
{
 delta = delta/2.0;
 printf("Delta reduced to %f ...\n", delta);
}
else
{
 best_f = z;
 best_x = x;
 best_y = y;
 printf("Better %f at (%f,%f)\n", z, x, y);
}

printf("Optimal value is %f at (%f,%f)\n", best_f, best_x, best_y);
printf("Function evaluations %d\n", COUNT);

float GradX(float x, float y)
{
 float a, b;

 a = 0.002;
b = F(x+0.001, y) - F(x-0.001,y);
printf("Grad x at (%f,%f) is %f approx is %f\n",x,y,2*x+1, b/a);
 return b/a;
}
float GradY(float x, float y)
{
 float a, b;
 a = 0.002;
 b = F(x, y+0.001) - F(x, y-0.001);
 printf("Grad y at (%f,%f) is %f approx is %f\n", x, y, 2*y, b/a);
 return b/a;
}

float F(float x, float y)
{
 COUNT++;
 return x*x + y*y + x + 1.0;
}