Construction, our nation’s largest industry, encompasses the residential sector, commercial and retail buildings, office and high-rise structures, major industrial and process complexes, and engineering infrastructure such as highways, dams, bridges, airports, and seaports. The complexity of projects demands that professional constructors and engineers possess detailed knowledge of the many aspects of the industry to effectively lead and manage the design and construction processes.

UALR’s construction-related programs provide curricula that equip for a wide range of design, managerial, and supervisory roles within this multi-faceted, dynamic industry. Technological, computer, and software orientation assist our graduates to develop into contributing members of the architectural, engineering, and construction industry with high paying entry level jobs. There are substantial opportunities for rapid advancement and salary increases with experience in the industry. Career opportunities for our graduates can be found with general and specialty contractors, architectural and engineering design firms, testing laboratories, government agencies, financial institutions, insurance and surety companies, and manufacturers of construction equipment and products. The courses provide an in-depth study of construction management, construction science, engineering science, engineering design, business, mathematics, and sciences. Extensive applications with construction and engineering computer software and hardware emphasize the most current technologies used by industry.

General Information

Degrees Offered
- Associate of Science in Construction Science
- Bachelor of Science in Construction Management
- Bachelor of Science in Civil and Construction Engineering
- Bachelor of Science in Architectural and Construction Engineering
- Bachelor of Science in Environmental Engineering
- Bachelor of Professional Studies - Construction Concentration
- Master of Science in Construction Management

Minor in Construction Management

The minor in construction management is available to all UALR students who want to learn about construction materials, methods, and management. Students are required to take eighteen credit hours of approved CNMG courses.

Admission Policy

After admission to UALR, any student may declare a major or minor in construction management. Admission to one of the department’s engineering majors requires readiness to take Calculus I and General Chemistry. Students may be provisionally admitted into one of the engineering majors before this, but they may require more than four years to complete the degree requirements.
Contact Information

To discuss either of the undergraduate construction management programs, students should visit Hank Bray in ETAS 202H, call (501) 569-8133, or send e-mail to hgbray@ualr.edu.

To discuss either of the construction engineering programs, students should visit Nick Jovanovic in ETAS 202F, call (501) 569-8226, or send e-mail to nsjovanovic@ualr.edu.

To discuss the environmental engineering program, students should visit Lashun Thomas in ETAS 202I, call (501) 569-8296, or send e-mail to lkthomas2@ualr.edu.

To discuss the graduate program in construction management, students should visit Jim Carr in ETAS 202E, call (501) 569-8065, or send e-mail to jkcarr1@ualr.edu.

Work Experience Requirement

All Bachelor of Science students in the department are required to complete a minimum of 800 contact hours of practical work experience in an approved construction- or engineering-related activity. This stipulation provides the graduate with valuable industry experience and insights and is part of the educational process.

Accreditation

The four-year baccalaureate construction management program is accredited by the American Council for Construction Education (ACCE). The ACCE is recognized by the Council for Higher Education Accreditation as the national accrediting agency for four-year baccalaureate programs in construction education. Accreditation is a means for recognizing educational institutions that achieve and maintain a level of performance, integrity, and quality that entitles them to the confidence of the educational community and the public they serve. The UALR construction management program is the only such accredited program in the University of Arkansas system.

The two-year associate's degree program in construction science is not accredited.

The four-year baccalaureate civil and construction engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

A new engineering program cannot seek accreditation until at least one student has graduated from the program. As new programs, the four-year baccalaureate degree programs in architectural and construction engineering and in environmental engineering are not accredited.

Student Activities

The UALR construction management program has five student chapters and one honor society for student involvement. The student chapters are affiliated with the Associated General Contractors (AGC), the Associated Builders and Contractors (ABC), the National Association of Home Builders (NAHB). The Arkansas chapter of each association sponsors the student chapters and provides opportunities for students to interact and network with members of their organizations. Special student membership is also available with the American Concrete Institute (ACI), American Society of Professional Estimators (ASPE), National Association of Women in Construction (NAWIC), and the International Code Council (ICC). Students who meet the requirements can become members of Sigma Lambda Chi, the International Honor Society for Leaders in Construction. The UALR construction management program is a member of the Associated Schools of Construction (ASC) and participates in the ASC regional construction management competitions. Selected students can also compete in the sponsoring student chapter construction management competitions for ABC, AGC, and FPS.

Engineering students have the opportunity to become involved with several engineering organizations, including the American Society of Civil Engineers (ASCE), the American Society of Mechanical Engineers (ASME), the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the Society of Women Engineers (SWE), and Engineers Without Borders (EWB). Engineering students can participate in regional and national student competitions, such as the Steel Bridge Competition, the Concrete Canoe Competition, the Big Beam Contest, and the Charles Pankow Foundation Annual Architectural Engineering Student Design Competition.

Degree Requirements

Associate of Science in Construction Science

The associate of science construction science program prepares students to work in the construction industry and continue their studies seamlessly in the baccalaureate construction management program.

A minor is not required. Students seeking an Associate of Science in Construction Management degree must achieve at least a 2.00 grade point average (GPA) in the major (all required CNMG courses).
Associate of Science in Construction Science (CNSC)

General: 63 total hours, including 20 hours above the freshman level, and 15 hours in residence

First-Year Colloquium (0-1 hour)
Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 19 for details)

1CNMG 1101 First-Year Colloquium in Construction

UALR General Education Requirements (35 credit hours)

UALR Standard Core (29 hours)
Communication-Written (6 hours)
History of Civilization (3 hours)
U.S. Traditions (3 hours)
Fine Arts (3 hours)
Humanities (3 hours)
Social Sciences (3 hours)
Science (8 hours)

EIT College Core (6 hours)
Mathematics (3 hours)
Humanities, Social Sciences, Oral Communication, or Interdisciplinary (3 hours)

Major Requirements (27 credit hours)

Business/Construction Electives (6 hours)
Any six hours of ACCT, BINS, CNMG, ECON, FINC, IBUS, MGMT, or MKTG courses

Construction Core (12 credit hours)
1CNMG 1101 First-Year Colloquium in Construction
1CNMG 1201 The Construction Industry
CNMG 1305 Drawings and Specifications
CNMG 2313 Construction Materials and Methods
CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems

1 Transfer, postbaccalaureate, and other students with more than 12 hours of prior college work may substitute a CNMG elective for CNMG 1101 and CNMG 1201, at the discretion of the program coordinator.

Construction Electives (9 credit hours)
Any nine hours of CNMG courses

Minor (none required)

Unrestricted General Electives
Remaining hours, if any, to reach 60 minimum total hours, 20 hours above the freshman level, and 15 hours in residence.

Bachelor of Science in Construction Management

The construction management program is an interdisciplinary baccalaureate degree program that builds upon construction methods, engineering techniques, and business courses offered in the Donaghey College of Engineering and Information Technology and the College of Business. The integrated curriculum provides a foundation for the capstone courses offered in the senior year and the required passage of the Associate Constructor (AC) examination.

A minor is not required. Students seeking a Bachelor of Science in Construction Management degree must achieve at least a 2.00 grade point average (GPA) in the major (all required CNMG courses), and also must pass the Associate Constructor (AC) examination.

Bachelor of Science in Construction Management (CNMG-BS)

General: 123 total hours, including 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence

First-Year Colloquium (0-1 hour)
Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 19 for details)

1CNMG 1101 First Year Colloquium in Construction

UALR General Education Requirements (35 credit hours)

UALR Standard Core (29 hours)
 Communication-Written (6 hours)
 History of Civilization (3 hours)
 U.S. Traditions (3 hours)
 Fine Arts (3 hours)
 Humanities (3 hours)
 Social Sciences (3 hours)
 Science (8 hours)

EIT College Core (6 hours)
 Mathematics (3 hours)
 Humanities, Social Sciences, Oral Communication, or Interdisciplinary (3 hours)

Major (88 hours)
 Communications (9 hours—0 hours beyond the UALR General Education Requirements)
 RHET 1311 Composition I
 RHET 1312 Composition II
 SPCH 1300 Speech Communication
 or CNMG 1385 Infrastructure, Environment, and Society

 Business (12 hours—9 hours beyond the UALR General Education Requirements**)
 **ACCT 2310 Principles of Accounting I or another accounting course.
 ECON 2301 Survey of Economics
 or ECON 2322 Principles of Microeconomics or another economics course.
 **MGMT 3300 Principles of Management or another management course.
 **MGMT 4391 Employment Law
 or MKTG 2380 Legal Environment of Business or another business law course.

 Mathematics and Science (17 hours—6 hours beyond the EIT College Core**)
 MATH 1302 College Algebra
 or MATH 1401 Precalculus
 **MATH 1303 Trigonometry
 or MATH 1401 Precalculus
 **Math elective (3 hours)
 MATH 1311 Applied Calculus I
 or MATH 1342 Business Calculus
 or MATH 1451 Calculus I
 or PSYC 2340 Statistics and Methods I
 or STAT 2350 Introduction to Statistical Methods or another math course beyond college algebra and trig.

 Physical Science electives (8 hours)
 Any two CHEM, ERSC, or PHYS core courses, including associated lab courses

Construction and Engineering (64 credit hours)
 CNMG 1085 Architecture, Engineering, and Construction Seminar (each semester)
 1CNMG 1101 First-Year Colloquium in Construction
 1CNMG 1201 The Construction Industry
 CNMG 1305 Drawings and Specifications
 CNMG 2313 Construction Materials and Methods
 CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems
 CNMG 2316 Construction Surveying with Lab
 CNMG 2318 Building Information Modeling (BIM)
CNMG 2333 Statics and Strength of Materials
CNMG 3195 Community Service Projects
CNMG 3321 Steel Construction
CNMG 3322 Concrete Construction
CNMG 3327 Field Engineering and Construction Equipment
CNMG 3339 Estimating I
CNMG 3347 Engineering Soil Mechanics with Lab
CNMG 4145 Professional Constructor Certification
CNMG 4245 Construction Management Capstone
CNMG 4310 Construction Financial Management
CNMG 4311 Estimating II
CNMG 4318 Advanced BIM
CNMG 4323 Construction Administration
CNMG 4329 Construction Planning and Scheduling
CNMG 4334 Construction Contracts and Law
CNMG 4342 Construction Safety
CNMG 4361 Green Construction

\(^1\) Transfer, postbaccalaureate, and other students with more than 12 hours of prior college work may substitute a CNMG elective for CNMG 1101 and CNMG 1201, at the discretion of the program coordinator.

Business Elective (3 hours)
Any 3 additional hours of ACCT, BINS, ECON, FINC, IBUS, MGMT, or MKTG courses

Computing Requirement (3 hours)
BINS 1310 Fundamentals of Information Technology
or CPSC 1370 Computer Literacy or another computer literacy course.

Construction Elective (3 hours)
Any 3 additional hours of CNMG courses or any courses approved by the program coordinator

Professional Requirements
Pass the American Institute of Construction (AIC) Associate Constructor (AC) Examination.
Document at least 800 hours of practical work experience in approved engineering- or construction-related activities, such as student competitions, part-time or full-time employment, internships, cooperative education, community service learning projects, or prior experience.

Minor (none required)

Unrestricted General Electives
Remaining hours, if any, to reach 120 minimum total hours, 45 hours of upper-level courses (3000-4000 level), or 30 hours in residence.

Goals, Objectives, and Outcomes for the Construction Management Program

The goals of the construction management program are to:

- Prepare students for successful careers in the architecture, engineering, and construction (AEC) industry or related fields.
- Provide employers with a well-educated workforce that is ready and able to perform valuable construction management services immediately after graduation.
- Encourage the growth of knowledge-based industry and stimulate economic growth in Arkansas.

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies. The educational objectives of the construction management program are to produce graduates who:
1. Rapidly become certified Construction Managers-In-Training (CMIT) and/or certified Associate Constructors (AC) employed in architecture, engineering, construction, or related fields or pursuing graduate or professional education in construction management, building construction, business, law, etc.

2. Become Certified Construction Managers (CCM) and/or Certified Professional Constructors (CPC) after gaining the required professional experience and the requisite knowledge to pass the certification exams.

3. Engage in lifelong learning, through on-the-job training, participation in professional societies, additional formal education, continuing education and professional development, research, and self-study, in order to use state-of-the-art knowledge to build safe and effective buildings and infrastructure and/or provide high quality service to the general public, employers, clients, and other professionals.

Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program. The construction management program will produce graduates who have:

a) an ability to apply knowledge of mathematics and applied and/or natural sciences to areas relevant to the discipline
b) an ability to design and conduct experiments, or test hypotheses, as well as to analyze and interpret data
c) an ability to formulate or design a system, process, procedure or program to meet desired needs
d) an ability to function on multidisciplinary teams
e) an ability to identify and solve technical or scientific problems
f) an understanding of professional and ethical responsibility
g) an ability to communicate effectively
h) the broad education necessary to understand the impact of technical and/or scientific solutions in a global and societal context
i) a recognition of the need for and an ability to engage in life-long learning
j) knowledge of contemporary issues
k) an ability to use the techniques, skills, and modern scientific and technical tools necessary for professional practice.

Bachelor of Science in Civil and Construction Engineering

The civil and construction engineering program focuses on structural engineering, geotechnical engineering, environmental engineering, and construction engineering. However, the program also exposes students to other major areas of civil engineering, including materials engineering, water resources engineering, highway engineering, and surveying.

A minor is not required. Students seeking a Bachelor of Science in Civil and Construction Engineering degree must pass each CNMG course with a grade of C or greater, must achieve at least a 2.00 grade point average (GPA) in the major (all required MATH, STAT, CHEM, ERSC, PHYS, CNMG and SYEN courses), and also must pass both the Fundamentals of Engineering (FE) and the Associate Constructor (AC) examinations.

Bachelor of Science in Civil and Construction Engineering (CVCE)

General: 128 total hours, including 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence

First-Year Colloquium (0-3 hours)
Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 36 for details)

CNMG 1101 First-Year Colloquium in Construction
or any other FYC course

UALR General Education Requirements (35 credit hours)
UALR Standard Core (29 hours)
Communication-Written (6 hours)
History of Civilization (3 hours)
U.S. Traditions (3 hours)
Fine Arts (3 hours)
Humanities (3 hours)
Social Sciences (3 hours)
Science (8 hours)

EIT College Core (6 hours)
Mathematics (3 hours)
Additional Mathematics/Sciences (3 hours)

Second Language Proficiency (none required)

Major (93 hours)

Humanities and Social Science (0 hours beyond the UALR General Education Requirements)
ARHA 2306 Introduction to Architecture
ECON 2301 Survey of Economics
or ECON 2322 Principles of Microeconomics
PHIL 2321 Ethics and Society: Professional Applications
POLS 1310 American National Government

Mathematics and Science (32 credit hours—18 hours beyond the EIT College Core**)
CHEM 1406 General Chemistry for Engineers
or CHEM 1402 General Chemistry I
**ERSC 4371 Engineering Geology
or ERSC 1302/1102 Physical Geology/Lab
or ERSC 1304/1104 Earth and the Environment/Lab
**ERSC 4372 Surface Water Hydrology
or ERSC 4473 Hydrogeology
MATH 1451 Calculus I (**1 hour exceeds EIT College Core)
MATH 1452 Calculus II (**1 hour exceeds EIT College Core)
**MATH 2453 Calculus III
**MATH 3322 Introduction to Differential Equations
PHYS 2321 Physics for Scientists and Engineers I
PHYS 2121 Physics for Scientists and Engineers I Lab
**STAT 3352 Applied Statistics I

Engineering and Construction (75 credit hours)
CNMG 1085 Architecture, Engineering, and Construction Seminar (each semester)
CNMG 1305 Drawings and Specifications
CNMG 1385 Infrastructure, Environment, and Society
CNMG 2313 Construction Materials and Methods
CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems
CNMG 2316 Construction Surveying with Lab
CNMG 2370 Engineering Statics
CNMG 3302 Engineering Economy
CNMG 3312 Engineering Structural Analysis
CNMG 3313 Civil Engineering Materials with Lab
CNMG 3327 Field Engineering and Construction Equipment
CNMG 3339 Estimating I
CNMG 3347 Engineering Soil Mechanics with Lab
CNMG 3357 Introduction to Environmental Engineering with Lab
CNMG 3374 Hydraulic Engineering with Lab
CNMG 3376 Engineering Structural Mechanics
CNMG 4321 Reinforced Concrete Design
CNMG 4323 Construction Administration
CNMG 4329 Construction Planning and Scheduling
Professional Requirements
Pass the National Council of Examiners for Engineering and Surveying (NCEES) Fundamentals of Engineering (FE) Examination.
Pass the American Institute of Construction (AIC) Associate Constructor (AC) Examination.
Document at least 800 hours of practical work experience in approved construction-related activities, such as student competitions, part-time or full-time employment, internships, cooperative education, community service learning projects, or prior experience.

Minor (none required)

Unrestricted General Electives
Remaining hours, if any, to reach 120 minimum total hours, 45 hours of upper-level courses (3000-4000 level), or 30 hours in residence.

Goals, Objectives, and Outcomes for the Civil and Construction Engineering Program
The goals of the civil and construction engineering program are to:
Prepare students for successful engineering or management careers in the architecture, engineering, and construction (AEC) industry or related fields.
Provide employers with a well-educated workforce that is ready and able to perform valuable civil and construction engineering and managerial services immediately after graduation.
Encourage the growth of knowledge-based industry and stimulate economic growth in Arkansas.

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies. The educational objectives of the civil and construction engineering program are to produce graduates who:
Rapidly become certified Engineer Interns (EI) and Associate Constructors (AC) employed in architecture, engineering, construction, or related fields or pursuing graduate or professional education in engineering, business, law, architecture, etc.
Become licensed Professional Engineers (PE) and/or Certified Professional Constructors (CPC) after gaining the required professional experience and the requisite knowledge to pass the licensing and/or certification exams.
Engage in lifelong learning, through on-the-job training, participation in professional societies, additional formal education, continuing education and professional development, research, and self-study, in order to use state-of-the-art knowledge to design and build safe and effective buildings and infrastructure and/or provide high quality service to the general public, employers, clients, and other professionals.

Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program. The civil and construction engineering program will produce graduates who have:
a. An ability to apply knowledge of mathematics, science, and engineering.
b. An ability to design and conduct experiments, as well as to analyze and interpret data.
c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
d. An ability to function on multidisciplinary teams.
e. An ability to identify, formulate, and solve engineering problems.
f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively.
h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for, and an ability to engage in life-long learning.

j. A knowledge of contemporary issues.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Bachelor of Science in Architectural and Construction Engineering

The architectural and construction engineering program focuses on structural engineering, mechanical engineering, electrical engineering, and construction engineering, in the context of integrated building system design and construction. The program also introduces students to architectural history and design principles.

A minor is not required. Students seeking a Bachelor of Science in Architectural and Construction Engineering degree must pass each CNMG course with a grade of C or greater, must achieve at least a 2.00 grade point average (GPA) in the major (all required MATH, STAT, CHEM, ERSC, PHYS, CNMG, and SYEN courses), and also must pass both the Fundamentals of Engineering (FE) and the Associate Constructor (AC) examinations.

Bachelor of Science in Architectural and Construction Engineering (ARCE)

General: 128 total hours, including 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence

First-Year Colloquium (0-3 hours)

Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 19 for details)

- CNMG 1101 First-Year Colloquium in Construction
- or any other FYC Course

UALR Standard Core (29 hours)

- Communication-Written (6 hours)
- History of Civilization (3 hours)
- U.S. Traditions (3 hours)
- Fine Arts (3 hours)
- Humanities (3 hours)
- Social Sciences (3 hours)
- Science (8 hours)

EIT College Core (6 hours)

- Mathematics (3 hours)
- Additional Math and Science (3 hours)

Major Requirements (93 credit hours)

- Humanities and Social Science (0 hours beyond the UALR General Education Requirements)
 - ARHA 2306 Introduction to Architecture
 - ECON 2301 Survey of Economics
 - or ECON 2322 Principles of Microeconomics
 - PHIL 2321 Ethics and Society: Professional Applications
 - POLS 1310 American National Government
- Mathematics and Science (32 credit hours—18 hours beyond the EIT College Core**)
 - CHEM 1406 General Chemistry for Engineers
 - or CHEM 1402 General Chemistry I
 - ERSC 4371 Engineering Geology
 - or ERSC 1302/1102 Physical Geology/Lab
 - or ERSC 1304/1104 Earth and the Environment/Lab
 - MATH 1451 Calculus I (**1 hour exceeds EIT College Core)
MATH 1452 Calculus II (**1 hour exceeds EIT College Core)
**MATH 2453 Calculus III
**MATH 3322 Introduction to Differential Equations
PHYS 2321 Physics for Scientists and Engineers I
PHYS 2121 Physics for Scientists and Engineers I Lab
**PHYS 2322 Physics for Scientists and Engineers II
**STAT 3352 Applied Statistics I

Engineering and Construction (72 credit hours)
CNMG 1085 Architecture, Engineering, and Construction Seminar (each semester)
CNMG 1305 Drawings and Specifications
CNMG 1385 Infrastructure, Environment, and Society
CNMG 2313 Construction Materials and Methods
CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems
CNMG 2370 Engineering Statics
CNMG 3302 Engineering Economy
CNMG 3312 Engineering Structural Analysis
CNMG 3313 Civil Engineering Materials with Lab
CNMG 3327 Field Engineering and Construction Equipment
CNMG 3339 Estimating I
CNMG 3347 Engineering Soil Mechanics with Lab
CNMG 3374 Hydraulic Engineering with Lab
CNMG 3376 Engineering Structural Mechanics
CNMG 3378 Engineering Thermodynamics
CNMG 4321 Reinforced Concrete Design
CNMG 4323 Construction Administration
CNMG 4329 Construction Planning and Scheduling
CNMG 4334 Construction Contracts and Law
CNMG 4342 Construction Safety
CNMG 4351 Foundation Design
CNMG 4371 Structural Steel Design
CNMG 4380 HVACR Engineering Fundamentals
CNMG 4185 Professional Engineering Seminar
CNMG 4285 Engineering Design Project
SYEN 2315 Circuits and Systems

Elective (3 hours)
Any 3 hours of engineering courses approved by the program coordinator

Professional Requirements
Pass the National Council of Examiners for Engineering and Surveying (NCEES) Fundamentals of Engineering (FE) Examination.
Pass the American Institute of Construction (AIC) Associate Constructor (AC) Examination.
Document at least 800 hours of practical work experience in approved engineering- or construction-related activities, such as student competitions, part-time or full-time employment, internships, cooperative education, community service learning projects, or prior experience.

Minor (none required)
Unrestricted General Electives
Remaining hours, if any, to reach 120 minimum total hours, 45 hours of upper-level courses (3000-4000 level), or 30 hours in residence.

Goals, Objectives, and Outcomes for the Architectural and Construction Engineering Program
The goals of the architectural and construction engineering program are to:

Prepare students for successful engineering or management careers in the architecture, engineering, and construction (AEC) industry or related fields.

Provide employers with a well-educated workforce that is ready and able to perform valuable architectural and construction engineering and managerial services immediately after graduation.

Encourage the growth of knowledge-based industry and stimulate economic growth in Arkansas.

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies. The educational objectives of the architectural and construction engineering program are to produce graduates who:

Rapidly become certified Engineer Interns (EI) and Associate Constructors (AC) employed in architecture, engineering, construction, or related fields or pursuing graduate or professional education in engineering, business, law, architecture, etc.

Become licensed Professional Engineers (PE) and/or Certified Professional Constructors (CPC) after gaining the required professional experience and the requisite knowledge to pass the licensing and/or certification exams.

Engage in lifelong learning, through on-the-job training, participation in professional societies, additional formal education, continuing education and professional development, research, and self-study, in order to use state-of-the-art knowledge to design and build safe and effective buildings and/or provide high quality service to the general public, employers, clients, and other professionals.

Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program. The architectural and construction engineering program will produce graduates who have:

a. An ability to design and conduct experiments, as well as to analyze and interpret data.

b. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

c. An ability to apply knowledge of mathematics, science, and

d. An ability to function on multidisciplinary teams.

e. An ability to identify, formulate, and solve engineering problems.

f. An understanding of professional and ethical responsibility.

g. An ability to communicate effectively.

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for, and an ability to engage in life-long learning.

j. A knowledge of contemporary issues.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Bachelor of Science in Environmental Engineering

The environmental engineering program focuses on the transport and fate of chemical species in air, water, and soil. For example, environmental engineers design air pollution control devices, water and wastewater treatment plants, and solid waste management systems.

A minor is not required. Students seeking a Bachelor of Science in Environmental Engineering degree must pass each CNMG course with a grade of C or greater, must achieve at least a 2.00 grade point average (GPA) in the major (all required MATH, STAT, BIOL, CHEM, ERSC, PHYS, and CNMG courses), and also must pass the Fundamentals of Engineering (FE) examination.

Bachelor of Science in Environmental Engineering (ENVE)

General: 128 total hours, including 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence

First-Year Colloquium (0-1 hour)

Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 19 for details)

CNMG 1101 First Year Colloquium in Construction
UALR General Education Requirements (35 credit hours)

UALR Standard Core (29 hours)
- Communication-Written (6 hours)
- History of Civilization (3 hours)
- U.S. Traditions (3 hours)
- Fine Arts (3 hours)
- Humanities (3 hours)
- Social Sciences (3 hours)
- Science (8 hours)

EIT College Core (6 hours)
- Mathematics (3 hours)
- Additional Mathematics/Sciences (3 hours)

Major Requirements (93 credit hours)
- Humanities and Social Science (0 hours beyond the UALR General Education Requirements)
 - ECON 2301 Survey of Economics
 or ECON 2322 Principles of Microeconomics
 - PHIL 2321 Ethics and Society: Professional Applications
 - POLS 1310 American National Government
- Mathematics and Science (59 credit hours—45 hours beyond the EIT College Core**)
 - BIOL 1400 Evolutionary and Environmental Biology
 or BIOL 2401 Microbiology
 - CHEM 1402 General Chemistry I
 or CHEM 1403 General Chemistry II
 - CHEM 2310 Analytical Chemistry I
 - CHEM 3150 General Organic Chemistry I Lab
 - CHEM 3350 General Organic Chemistry I
 - ERSC 1102 Physical Geology Lab
 - ERSC 1302 Physical Geology
 or ERSC 4372 Surface Water Hydrology
 or ERSC 4473 Hydrogeology
 - MATH 1451 Calculus I (**1 hour exceeds EIT College Core)
 or MATH 1452 Calculus II
 or MATH 2453 Calculus III
 - MATH 3322 Introduction to Differential Equations
 - PHYS 2321 Physics for Scientists and Engineers I
 - PHYS 2121 Physics for Scientists and Engineers I Lab
 - STAT 3352 Applied Statistics I
 - Environmental Science Elective
 or CHEM 4342 Environmental Chemistry
 or ERSC 4322 Environmental Geology
- Engineering (48 credit hours)
 - CNMG 1085 Architecture, Engineering, and Construction Seminar (each semester)
 - CNMG 1385 Infrastructure, Environment, and Society
 - CNMG 2370 Engineering Statics
 - CNMG 3302 Engineering Economy
 - CNMG 3313 Civil Engineering Materials with Lab
 - CNMG 3347 Engineering Soil Mechanics with Lab
 - CNMG 3357 Introduction to Environmental Engineering with Lab
 - CNMG 3374 Hydraulic Engineering with Lab
 - CNMG 3376 Engineering Structural Mechanics
CNMG 3378 Engineering Thermodynamics
CNMG 4357 Water and Wastewater Engineering
CNMG 4362 Water Resources Engineering
CNMG 4364 Air Pollution Engineering
CNMG 4366 Solid and Hazardous Waste Management
CNMG 4368 Environmental Risk Assessment
CNMG 4369 Soil and Groundwater Remediation
CNMG 4185 Professional Engineering Seminar
CNMG 4285 Engineering Design Project

Professional Requirements
Pass the National Council of Examiners for Engineering and Surveying (NCEES) Fundamentals of Engineering (FE) Examination.
Document at least 800 hours of practical work experience in approved engineering- or construction-related activities, such as student competitions, part-time or full-time employment, internships, cooperative education, community service learning projects, or prior experience.

Minor (none required)

Unrestricted General Electives
Remaining hours, if any, to reach 120 minimum total hours, 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence.

Goals, Objectives, and Outcomes for the Environmental Engineering Program
The goals of the program are to:
Prepare students for successful careers in environmental engineering, civil engineering, or related fields.
Provide employers with a well-educated workforce that is ready and able to perform valuable environmental and civil engineering services immediately after graduation.
Encourage the growth of knowledge-based industry and stimulate economic growth in Arkansas.

ABET Program Educational Objectives are broad statements that describe what graduates are expected to attain within a few years of graduation. These objectives must be consistent with the mission of the institution, the needs of the program’s various constituencies, and the ABET Criteria for Accrediting Engineering Programs. They must be reviewed and revised periodically, through a process that involves the program’s constituencies.

The objectives of the program are to produce engineering graduates who:
Are certified Engineering Interns (EI) employed in environmental engineering, civil engineering, or related fields or are pursuing graduate or professional education in engineering, medicine, business, law, etc.
Become licensed Professional Engineers (PE) and Board Certified Environmental Engineers (BCEE) after gaining the required professional experience and the additional requisite knowledge to pass the licensing and certification exams.
Engage in lifelong learning, e.g., through additional formal education, continuing education, professional development, research, and self-study, in order to use state-of-the art knowledge to design safe and effective environmental systems and programs and to provide high quality services to the general public, employers, clients, and other professionals.

ABET Student Outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they progress through the program.

The environmental engineering program will produce graduates who have:
 a. An ability to design and conduct experiments, as well as to analyze and interpret data.
 b. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
 c. An ability to apply knowledge of mathematics, science, and
 d. An ability to function on multidisciplinary teams.
 e. An ability to identify, formulate, and solve engineering problems.
 f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively.

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for, and an ability to engage in life-long learning.

j. A knowledge of contemporary issues.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Bachelor of Professional Studies - Construction Concentration

The professional studies program is an interdisciplinary baccalaureate degree program that develops communication and management skills and provides basic knowledge in the field of construction.

A minor is not required. Students seeking a Bachelor of Professional Studies—Construction Concentration degree must achieve at least a 2.00 grade point average (GPA) in the concentration (all required CNMG courses).

Bachelor of Professional Studies - Construction Concentration (BPS-Const)

General: 120 total hours, including 45 hours of upper-level courses (3000-4000 level), and 30 hours in residence

First-Year Colloquium (0-1 hour)

Required of full-time freshmen entering college for the first time and transfer students with less than 12 hours of credit. (See page 19 for details)

1CNMG 1101 First Year Colloquium in Construction

UALR General Education Requirements (35 credit hours)

UALR Standard Core (29 hours)

- Communication-Written (6 hours)
- History of Civilization (3 hours)
- U.S. Traditions (3 hours)
- Fine Arts (3 hours)
- Humanities (3 hours)
- Social Sciences (3 hours)
- Science (8 hours)

EIT College Core (6 hours)

- Mathematics (3 hours)
- SPCH 1300 Speech Communication

Major (39 hours)

BPS Professional Core (15 hours)

- MGMT 3300 Principles of Management
- MGMT 3320 Human Resources Management
- MGMT 3340 Managing People in Organizations
- RHET 3316 Writing for the Workplace
- SPCH 3320 Advanced Public Speaking

BPS Core Electives (6 hours - select from the following)

- ITEC 3610 Introduction to Information Technology and Applications
- PSYC 3370 Industrial Psychology
- PSYC 4325 Personnel Psychology
- PSYC 4363 Organizational Psychology
- RHET 3301 Editing for Use and Style
- RHET 3315 Persuasive Writing
- SPCH 3330 Professional Communication
- SPCH 3340 Communication Ethics for the Professional
Construction Concentration (18 credit hours)
Required Construction Courses (12 hours)
CNMG 1305 Drawings and Specifications
CNMG 2313 Construction Materials and Methods
CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems
CNMG 2318 Building Information Modeling (BIM)
Construction Electives (6 hours - select from the following)
CNMG 3321 Steel Construction
CNMG 3327 Field Engineering and Construction Equipment
CNMG 3339 Estimating I
CNMG 4310 Construction Financial Management
CNMG 4311 Estimating II
CNMG 4318 Advanced BIM
CNMG 4323 Construction Administration
CNMG 4329 Construction Planning and Scheduling
CNMG 4334 Construction Contracts and Law
CNMG 4342 Construction Safety
Minor (none required)
Unrestricted General Electives
Remaining hours, if any, to reach 120 minimum total hours, 45 hours of upper-level courses (3000-4000 level), or 30 hours in residence.

Goals, Objectives, and Outcomes for the Professional Studies - Construction Concentration Program

The goals of the professional studies – construction concentration program are to:

- Prepare students for successful careers in the architecture, engineering, and construction (AEC) industry or related fields.
- Provide employers with a well-educated workforce that is ready and able to perform valuable construction services immediately after graduation.
- Encourage the growth of knowledge-based industry and stimulate economic growth in Arkansas.

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies. The educational objectives of the professional studies - construction concentration program are to produce graduates who:

1. Rapidly become employed in architecture, engineering, construction, or related fields or pursuing graduate or professional education in construction management, building construction, business, law, etc.
2. Engage in lifelong learning, through on-the-job training, participation in professional societies, additional formal education, continuing education and professional development, research, and self-study, in order to use state-of-the-art knowledge to build safe and effective buildings and infrastructure and/or provide high quality service to the general public, employers, clients, and other professionals.

Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program. The professional studies - construction concentration program will produce graduates who have:

a) an ability to apply knowledge of mathematics and applied and/or natural sciences to areas relevant to the discipline
b) an ability to design and conduct experiments, or test hypotheses, as well as to analyze and interpret data
c) an ability to formulate or design a system, process, procedure or program to meet desired needs
d) an ability to function on multidisciplinary teams
e) an ability to identify and solve technical or scientific problems
f) an understanding of professional and ethical responsibility
g) an ability to communicate effectively
h) the broad education necessary to understand the impact of technical and/or scientific solutions in a global and societal context
i) a recognition of the need for and an ability to engage in life-long learning
j) knowledge of contemporary issues
k) an ability to use the techniques, skills, and modern scientific and technical tools necessary for professional practice.

Courses in Construction Management and Architectural, Civil, Construction, and Environmental Engineering

In general, courses are offered only in the term that is indicated in the course description. However, courses may be offered in other terms if sufficient student demand exists and if qualified instructors are available.

CNMG 1085 Architecture, Engineering, and Construction (AEC) Seminar
This non-credit seminar is required for all undergraduate students majoring in construction management, architectural and construction engineering, civil and construction engineering, and environmental engineering. The seminar meets once per month, up to five times per semester, and provides students with opportunities for professional development and social interaction. Activities will include learning about student organizations and student competitions, hearing guest speakers from industry and government, learning about employment opportunities, attending senior design project final presentations, and social events. One hour per month. Zero credit hours. Fall and Spring.

CNMG 1101 First-Year Colloquium in Construction
An introduction to construction engineering and construction management, along with goal setting, time management, and the on- and off-campus resources needed for success at UALR. Hands-on activities and group projects explore various concepts in construction. Satisfies the UALR First Year Colloquium requirement. Two hours lab. One credit hour. Fall only.

CNMG 1201 The Construction Industry
Introduction to the construction industry and the career opportunities available within residential, building, heavy civil, and industrial construction. The different roles of the various participants are examined along with industry history and traditions. Proper dress and safety requirements for office and field site visits discussed. Includes guest speakers, field trips, and project site visits. One hour lecture, three hours lab. Two credit hours. Fall only.

CNMG 1305 Drawings and Specifications
Introduction to basic construction drawings and specification interpretation. Emphasis on construction drawings and blueprint reading, CSI specifications and master format, project manual, shop drawings, as-built drawings, and proper construction terminology. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 1385 Infrastructure, Environment, and Society
This course examines the relationships between the natural environment, the built environment, and society. By studying the civil infrastructure that provides shelter, clean air and water, and transportation systems for people and cargo, the disciplines and subdisciplines of architectural, environmental, civil, and construction engineering are introduced. Students deliver oral presentations and listen to and critique the presentations of others. Two hours lecture. Two hours lab. Three credit hours. Fall only.

CNMG 2313 Construction Materials and Methods
Concurrent prerequisite: CNMG 1305. Introduction to specifications, standards, codes, quality control, and quantity survey as they pertain to the execution of selected construction materials. Topics include site work, concrete, masonry, steel, rough and finish carpentry, thermal and moisture protection, doors and windows, finishes, and specialties. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 2314 Mechanical, Electrical, and Plumbing (MEP) Systems
Concurrent prerequisite: CNMG 1305. Introduction to functions of service systems within a modern structure. Includes heating, ventilating, air-conditioning (HVAC), plumbing, fire protection, electrical, and conveying systems. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 2316 Construction Surveying with Lab
Prerequisite: CNMG 1305, and MATH 1303 or 1401. Introduction to the principles of construction surveying, project layout, and field performance and surveying equipment management. Topics will include use and care of surveying instruments, directions, angles, surveying calculations, errors, and computations of areas and volumes. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 2318 Building Information Modeling
Prerequisite: CNMG 1305. The course will focus on utilizing basic functions of Building Information Modeling (BIM) for residential and commercial construction. During the course, students will examine geometry, spatial relationships, geographic information, quantities and properties of building components. Students will create virtual models of buildings that can be used for quantity take offs. Two hours lecture, two hours lab. Three credit hours. Spring only.

CNMG 2330 Introduction to Sustainability
This interdisciplinary course introduces students to the concept of sustainability and the greatest sustainability challenges of our time related to natural, social, built, and managed systems. Students will study each module in class, prepare a research presentation related to one topic module, and participate in a community engagement service learning project related to one module. The course will challenge students to take action toward increased personal sustainability and responsibility. Three hours lecture. Three credit hours. Cross-listed as MGMT 2330 and POLS 2330. Offered on demand.

CNMG 2333 Statics and Strength of Materials
Prerequisite: MATH 1303 or 1401. An analytical and practical approach to the principles and physical concepts of statics and strength of materials related to construction. Two hours lecture, two hours lab. Three credit hours. Fall only.

CNMG 2370 Engineering Statics
Prerequisite: Grade of C or higher in PHYS 2321. Concurrent prerequisite: MATH 2453. Static equilibrium of particles, equivalent systems of forces, equilibrium of rigid bodies, centroids and centers of gravity, analysis of structures, dry friction, and moments of inertia. Two hours lecture. Two hours lab. Three credit hours. Cross listed as SYEN 2370. Fall only.

CNMG 2199, 2299, 2399 Special Topics in Construction
Prerequisites: consent of instructor based on relevance of subject matter to student career goals. Designed to meet special needs of students or industry to cover application of construction management or construction engineering to specific problems. Meets equivalent of one hour per week for each credit hour value. May be taken more than once for credit. One, two, or three credit hours. Offered on demand.

CNMG 3195 Community Service Projects
Prerequisites: Sophomore standing and consent of instructor. Students will complete at least 40 hours of on- or off-campus community service on an approved project. Three hours lab. One credit hour. Fall only.

CNMG 3302 Engineering Economy
Prerequisite: Grade of C or higher in MATH 1311, 1342 or 1451. Introduction to engineering economic decisions for evaluating the worth of products, services, projects and systems; time value of money, economic equivalence concepts, comparison of investment alternatives, evaluating economic life and replacement analysis, inflation, depreciation and impact of taxes on engineering decisions, and economic risk analysis. Three hours lecture. Three credit hours. Cross listed as SYEN 3301. Fall only.

CNMG 3312 Engineering Structural Analysis
Prerequisites: Grades of C or higher in MATH 2453 and CNMG 3376. Structural analysis of trusses, beams, frames, cables, and arches, including determinate and indeterminate structures; deflections of beams and frames; introduction to stiffness methods and matrix analysis of structures. Two hours lecture. Two hours lab. Three credit hours. Fall only.

CNMG 3313 Civil Engineering Materials with Lab
Prerequisites: Grades of C or higher in CHEM 1402 or 1406, and in CNMG 3376. Properties of materials and materials science, including atomic structure and bonding, lattice structures and defects, grain structure, alloys, and phase diagrams. Construction engineering materials, including steel, aluminum, aggregates, Portland cement, concrete, masonry, asphalt, wood, and composites. Two hours lecture, two hours lab. Three credit hours. Fall only.

CNMG 3321 Steel Construction
Prerequisite: CNMG 1305. Structural steel materials, shapes and uses; structural steel specifications and construction practices; structural steel fabrication and erection techniques, practices, and estimation; bolting, welding, and cutting of structural steel; construction techniques for stairs, bar joists and girders, tilt-ups, and steel deck; steel drawings, including set-up, design, detail, and erection drawings; estimating structural steel quantities and pricing. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 3322 Concrete Construction
Prerequisite: CNMG 2333. Provides an in-depth examination of the principles and applications of concrete construction. Study of process of placing ready mix concrete from batching to curing along with the design, analysis, and economics of
formwork. Reinforcing steel, the ACI field technician applications, and the ACI Flatwork Technician Certification are also covered. Two hours lecture, two hours lab. Three credit hours. Fall only.

CNMG 3324 Heavy Civil Construction
This course introduces construction management concepts applicable to heavy civil projects, such as highways, bridges, and water treatment plants. Topics include estimating, bidding, planning, scheduling, contract administration, and construction safety. The course emphasizes differences between the management of heavy civil construction projects and commercial building construction projects. Two hours lecture. Two hours lab. Three credit hours. Fall only.

CNMG 3327 Field Engineering and Construction Equipment
Prerequisite: Junior standing or higher. Principles of construction project field supervision and construction equipment. Leadership, motivation, communications, problem solving, decision making, production control, quality control, and computerized reporting. Earth moving fundamentals, equipment ownership and operating costs, and equipment selection and usage. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 3339 Estimating I
Prerequisites: MATH 1303 or 1401, and CNMG 2313 and 2314. Theory and practice of construction project bidding and estimating. Topics include proposal solicitation and preparation, bidding strategy, estimate types and content, quantity survey, ethics, and an introduction to computer use in estimating. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 3347 Engineering Soil Mechanics with Lab
Prerequisites: CNMG 2333 or 3376. Introduction to soils and foundation engineering and construction soil mechanics technology. Students will study engineering properties of soils, soil field exploration procedures, soil test reports, soil compaction and stabilization construction methods, water movement in soils, moisture control and drainage procedures, in-situ stress distribution in shallow and deep soils, shear strength of clay, silt and sand soils and design of shallow building foundations. Students will perform ASTM soil testing to support the course content and generate laboratory technical reports for major laboratory tests performed during the course. Two hours lecture and two hours laboratory. Three credit hours. Fall and Spring.

CNMG 3357 Introduction to Environmental Engineering with Lab
Prerequisites: Grade of C or higher in CHEM 1402 or 1406. Concurrent Prerequisite: MATH 3322. The study of the fundamental principles of environmental processes, pollution, and pollution control. Topics include mass transfer, water chemistry and microbiology, water and air pollution, and solid- and hazardous-waste management. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 3371 Engineering Dynamics
Prerequisite: Grade of C or higher in CNMG 2370. Kinematics and kinetics of particles, systems of particles, and rigid bodies; energy and momentum methods; mechanical vibrations and resonance; introduction to structural dynamics due to time-varying loads, such as wind and seismic loading. Two hours lecture. Two hours lab. Three credit hours. Cross listed as SYEN 3371. Offered on demand.

CNMG 3374 Hydraulic Engineering with Lab
Prerequisite: Grade of C or higher in CNMG 2370. Properties of water; hydrostatics; water flow in pipes; pipelines and piping networks; water pumps; water flow in open channels; basic fluid mechanics measurement equipment and techniques. Two hours lecture, two hours lab. Three credit hours. Fall only.

CNMG 3376 Engineering Structural Mechanics
Prerequisites: Grade of C or higher in CNMG 2370. The study of deformation in structural materials: stresses and strains due to tension, compression, torsion, and bending; internal shear forces and bending moments; stress and strain transformations; design of beams and analysis of beam deflections; buckling of columns; introduction to the deformation of structures. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 3378 Engineering Thermodynamics
Prerequisites: Grades of C or higher in CHEM 1402, PHYS 2321, and MATH 1452. Properties of pure substances, thermodynamic processes, heat and work, the first law of thermodynamics, closed systems, enthalpy, open systems, the second law of thermodynamics, entropy, exergy, and an introduction to power and refrigeration cycles. Three hours lecture. Three credit hours. Cross listed as SYEN 3378. Spring only.

CNMG 4100, 4200, 4300 Independent Study
Prerequisite: junior standing or higher. Topic and method of procedure must have approval of the supervising faculty member. Four to six hours per week of work on the project for each hour of credit earned. The exact hourly commitment per week and credit hour value depends on the nature of the project and is agreed on in advance by the student and the instructor. With approval, may be repeated for up to six hours of credit. One, two, or three credit hours. Offered on demand.
CNMG 4145 Professional Constructor Certification
Prerequisite: Restricted to students within 12 months of graduation. Description of American Institute of Construction (AIC) certification programs and preparation for Constructor Qualifying Examinations leading to certifications as Associate Constructor (AC) and Certified Professional Constructor (CPC). Students must pass the certification exam for AC or CPC to pass the course. Three hours lab. One credit hour. Spring only.

CNMG 4185 Professional Engineering Seminar
Prerequisites: Grades of C or higher in RHET 1312 or 1320, in CNMG 1385, and In either CNMG 4362 or 4371. Restricted to students within 12 months of graduation. Students learn about the importance of engineering licensure, gain an understanding of professional and ethical responsibility including principles of sustainability in design, enhance the ability to function on and lead a multidisciplinary team, and begin preliminary work on the senior design project, which continues in CNMG 4285. Students must pass the AC and FE exams to pass the course. Three hours lab. One credit hour. Fall only.

CNMG 4245 Construction Management Capstone
Prerequisite: Restricted to students in the final semester of the construction management program. A capstone course. Students develop and organize construction companies. Project contracts are awarded and contract administration is required. One hour lecture, three hours lab. Two credit hours. Spring only.

CNMG 4285 Engineering Design Project
Prerequisite: Grade of C or higher in CNMG 4185. Restricted to students in the final semester of one of the engineering programs. Continuation of CNMG 4185. Prepare for engineering practice by designing a major architectural, environmental, or civil engineering project, based on knowledge and skills acquired in earlier course work and incorporating appropriate engineering codes and standards, and multiple realistic constraints (e.g., economic, ethical, safety). One hour lecture, three hours lab. Two credit hours. Spring only.

CNMG 4310 Construction Financial Management
Prerequisite: junior standing or higher. Concepts and principles of construction financial management: construction financial systems and transactions, financial statements, depreciation analysis, labor burden, overhead determination, bid profit margins, and profit center analysis. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4311 Estimating II
Prerequisites: CNMG 3321, 3322, and 3339. Advanced applications and concepts of construction project estimating. Topics include computer aided estimating, correcting estimating errors, labor and equipment productivity, risk adjustment to price, pricing by asset utilization, mark-up, and ethics. Students compete in mock bids on different types of construction projects. Two hours lecture, two hours lab. Three credit hours. Spring only.

CNMG 4313 Construction Management Fundamentals
This course provides an overview of construction management fundamentals such as delivery systems, estimating, scheduling and administration. It also covers construction practices such as safety, construction materials and methods, quality, and productivity. Topics include site work, concrete, masonry, steel, rough and finish carpentry, thermal and moisture protection, doors and windows, finishes, electrical and mechanical systems. Three credit hours. Offered on demand.

CNMG 4315 Construction Business Operations
Prerequisite: junior standing or higher. The course will identify and explore the tasks required for the successful operation of a construction company. Beginning with start-up, the course will study and participate in the operation of a medium size construction through a fiscal year. Course work will include daily, weekly, monthly, quarterly, and annual tasks. The course will cover portions of the Arkansas Contractor’s Licensing requirements. Two hours lecture. Two hours lab. Three credit hours. Offered on demand.

CNMG 4318 Advanced BIM
Prerequisites: CNMG 2318. Building information modeling (BIM) functions will be used for complex commercial construction; topographic information of sites, project datum, quantities and properties of building components, building sustainability analysis, documenting projects, and detailing of MEP or structural designs; Rendering of exterior and interior views. Two hours lecture and two hours lab. Three credit hours. Fall only.

CNMG 4321 Reinforced Concrete Design
Prerequisite: Grade of C or higher in CNMG 3312. Behavior and design of reinforced concrete elements, including beams, columns, slabs, footings, foundations, and retaining walls; introduction to prestressed concrete design. Two hours lecture. Two hours lab. Three credit hours. Fall only.

CNMG 4322 Building Structure Design
Prerequisites: CNMG 3321 or 4371, and CNMG 3322 or 4321. Introduction to design and analysis of steel and concrete building structures. Student will study beams, columns, and tension components including fasteners and welds
constructed from high strength structural steel following the AISC Manual, during the first half of the course. Reinforced concrete design and analysis procedures for rectangular beams and slabs for bending and shear loads and axially loaded round and square long columns will be studied during the second half of the course. The provisions of the ACI Code will be followed. Concrete prestressed beam technology will be included as well as steel rebar development. Two hours lecture and two hours problem lab. Three credit hours. Offered on demand.

CNMG 4323 Construction Administration

Prerequisite: CNMG 4334. An introduction to construction project control and administration through computer applications. Topics include project team development, standard agreements, contract documents utilization, record keeping, submittals, subcontract management, purchasing, expediting, change orders, claims, progress payments, closeout, and internet-based project control. Two hours lecture. Two hours lab. Three credit hours. Fall and Spring.

CNMG 4325 Project Quality Control (QC) and Submittals

Prerequisite: Restricted to students in the final semester of the construction management program. Project scope identification, management, and control; scope breakdown and submittal management in the identification of quality control issues related to the estimate and scope procurement process. Three hours lecture. Three credit hours. Offered on demand.

CNMG 4327 Temporary Structures

Prerequisites: CNMG 3321 and 3322. The study of engineering standards, designs, practices, and procedures for erecting temporary structures used to facilitate construction. Topics include earth-retaining structures, slurry walls, dewatering, underpinning, scaffolding, formwork, falsework and shoring, bracing and guy ing for stability. Two hours lecture. Two hours lab. Three credit hours. Offered on demand.

CNMG 4329 Construction Planning and Scheduling

Prerequisite: CNMG 3339. An in-depth study of the process of creating and monitoring a construction project schedule. Creation of project schedules on a variety of scheduling software. Two hours lecture, two hours lab. Three credit hours. Fall and Spring.

CNMG 4334 Construction Contracts and Law

Prerequisite: junior standing or higher. A study of construction contracts in relation to project delivery systems and the basic principles of construction law. Case studies are used to analyze selected areas that affect the construction process. Topics include standard agreements and conditions, negligence, risk, indemnities, modifications, mechanics lien, claims, dispute resolution, conflicts of interest, ethical consideration, and labor law. Two hours lecture. Two hours lab. Three credit hours. Fall and Spring.

CNMG 4342 Construction Safety

Prerequisite: junior standing or higher. A study of the principles of construction safety management and OSHA 29 CFR PART 1926. The OSHA Construction Industry Training Course 500 topics covered in depth. Students develop a company safety plan and hazardous communications program, perform safety analysis, conduct safety meetings, and write accident investigation reports. Students complete the topic requirements for the OSHA 10-hour and 30-hour Construction Safety and Health training card. Two hours lecture and two hours lab. Three credit hours. Fall and Spring.

CNMG 4351 Foundation Design

Prerequisites: Grade of C or higher in CNMG 3347 and 4321. The major portion of the course is composed of selected geotechnical aspects of foundation design, including both shallow and deep foundations. Topics include: ultimate bearing capacity, allowable bearing capacity, consolidation settlement of shallow foundations, pile foundations for bearing and friction piles, lateral earth pressure and retaining wall design, foundation design on difficult soils, and specialty soil improvement and ground modification. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4354 Highway Engineering

Prerequisite: Grade of C or higher in CNMG 2316. An introduction to highway engineering and traffic analysis. Topics include geometric design of highways, pavement design, traffic flow, highway capacity, level-of-service analysis, traffic control devices and safety, travel demand and traffic forecasting. Three hours lecture. Three credit hours. Fall only.

CNMG 4357 Water and Wastewater Engineering

Prerequisites: Grades of C or higher in CNMG 3357 and 3374. An introduction to drinking water treatment and distribution and wastewater collection and treatment. Topics include coagulation; flocculation; softening; ion exchange; membrane filtration; sedimentation; filtration; disinfection; wastewater microbiology; primary, secondary, and tertiary treatment of wastewater; and residuals management. Three hours lecture. Three credit hours. Spring only.

CNMG 4361 Green Construction

Prerequisite: Junior standing or higher. Overview of design and construction delivery systems for high performance green buildings; relevant criteria and established guidelines; green standards; high performance green buildings and sustainability; vocabulary associated with sustainability and green buildings; physical limitations of materials. Two hours lecture. Two hours lab. Three credit hours. Spring only.
CNMG 4362 Water Resources Engineering
Prerequisites: Grades of C or higher in CNMG 3374 and ERSC 4372. Analysis and design of hydraulic facilities including water supply and distribution systems, stormwater and wastewater collection systems, pumps and turbines, open channels, culverts, and groundwater wells. Analysis of rainfall and river flow; surface and subsurface water storage. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4364 Air Pollution Engineering
Prerequisites: Grades of C or higher in CNMG 3357 and CHEM 1403. The study of the fundamental principles of air pollution, sources, effects, and management mechanisms. Discussion of air quality standards, regulations and criteria; meteorological factors and dispersion modeling. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4366 Solid and Hazardous Waste Management
Prerequisites: Grade of C or higher in CNMG 3357. Overview of fundamental principles related to solid and hazardous waste management including collection, handling, costs and disposal. Discussion of rules, regulations and management systems for proper destruction, immobilization and control of solid and hazardous wastes. Evaluation of engineering systems to minimize costs and assessment of environmental impact of management system. Two hours lab. Three credit hours. Fall only.

CNMG 4368 Environmental Risk Assessment
Prerequisites: Grades of C or higher in BIOL 2401 and CNMG 3357. Concurrent Prerequisites: STAT 3352. Fundamentals of risk assessment, including ecological and human risk and applications in environmental engineering. Topics include hazard identification, dose response assessment, exposure assessment and risk characterization. Two hours lecture. Two hours lab. Three credit hours. Fall only.

CNMG 4369 Soil and Groundwater Remediation
Prerequisite: Grade of C or higher in CNMG 3357. Concurrent prerequisite: ERSC 4473. Overview of fundamental principles related to groundwater and soil remediation. Discussion of physical, chemical, and biological remediation technologies for contaminated groundwater and soil by in-situ and ex-situ applications. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4371 Structural Steel Design
Prerequisite: Grade of C or higher in CNMG 3312. Behavior and design of structural steel elements, including connectors, tension and compression members, columns, and braced and unbraced beams; members under combined forces; joints and connecting elements; connections. Two hours lecture. Two hours lab. Three credit hours. Spring only.

CNMG 4379 Heat Transfer
Prerequisites: Grade of C or higher in CNMG 3374 or SYEN 4374. Concurrent prerequisite: MATH 3322. Steady and transient heat conduction; forced, natural, and multiphase convection; heat exchanger design and analysis; radiation heat transfer; mass transfer. Three hours lecture. Three credit hours. Cross listed as SYEN 4379. Offered on demand.

CNMG 4380 Heating, Ventilating, Air-Conditioning, and Refrigeration (HVACR) Engineering Fundamentals
Prerequisite: Grade of C or higher in CNMG 3378. Fundamentals of heating, ventilating, air-conditioning, and refrigeration (HVACR) engineering; refrigeration cycles; psychrometrics; indoor air quality and ventilation; heating and cooling loads. Two hours lecture, two hours lab. Three credit hours. Cross-listed as SYEN 4380. Spring only.

CNMG 4381 Thermal Powerplant Engineering
Prerequisite: Grade of C or higher in CNMG 3378. Thermodynamics of combustion and power cycles; internal combustion engines; steam turbine powerplants; gas turbine powerplants; combined cycle powerplants; introduction to alternative energy systems. Two hours lecture. Two hours lab. Three credit hours. Cross listed as SYEN 4381. Offered on demand.

CNMG 4389 Professional Engineering Licensure
Concurrent prerequisite: Senior standing or above and registration for the Fundamentals of Engineering exam. Legal, regulatory, and ethical issues related to the practice of engineering; preparation for engineering licensure examinations. Two hours lecture. Three credit hours. Cross listed as SYEN 4389/5389. Offered on demand.

CNMG 4391 Cooperative Education
Prerequisites: junior standing or above, declared major in construction management or construction engineering, and cumulative GPA of at least 2.50; approval of assignment by department chairperson. Requires at least 200 contact hours on the job. Three credit hours. Offered on demand.

CNMG 4395 Professional Development
Prerequisites: senior standing or above and consent of instructor. Partnerships between students and nonprofit community organizations will be established. Students use skills in construction management or construction engineering to assist with construction-related projects. Service hours will be established at the beginning of the course. Three credit hours. Offered on demand.

CNMG 4199, 4299, 4399 Special Topics in Construction
Prerequisites: consent of instructor based on relevance of subject matter to student career goals. Designed to meet special needs of students or industry to cover application of construction management or construction engineering to specific problems. Meets equivalent of one hour per week for each credit hour value. May be taken more than once for credit. One, two, or three credit hours. Offered on demand.