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Abstract: Health-related data is complex, heterogeneous, and frequently temporally 

discontinuous which makes it difficult to analyze, and even more difficult to assess for quality, 

detect errors, or address anomalies. Undetected errors and anomalies within medical data, if not 

properly addressed, can have far reaching humanitarian and/or financial consequences. 

Many machine learning methodologies applied towards automatic detection of complex errors or 

anomalies are well known. However, the additional challenge in detection of anomalies in health 

care data is the so-called temporal or contextual dependency – i.e., the challenge of distinguishing 

"episodes" of anomalous data that are anomalous either in the context of a particular time window 

or specific to some particular medical condition.  In this paper, we present research in progress on 

the application to medical data of state-of-the-art anomaly detection techniques based on Long-

Short-Term-Memory (LSTM) neural networks. We hypothesize that LSTMs present a robust and 

flexible approach to the temporal anomaly detection in medical data sets due in part to their 

ability to retain information about both long-term and short-term dependencies on the model 

outcome.   
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INTRODUCTION 

The introduction of Electronic Health IT systems has enabled vast collection and efficient management of 

patient records by storing patient-related information in a digital format. This type of a system allows for 

the maintenance of a ground truth of patients’ records in contrast with paper based patient notes and other 

health records. However, the introduction of electronic health records has introduced issues that were not 

as present in the paper based system [BHCW10, BFD16]. Typically, these issues are typographical errors, 

software induced errors, communication errors, etc. These errors, either human or machine generated, 

manifest themselves as duplicate information being recorded in multiple health care departments, missing 

values caused by the values not being available at the time of entry, missing values due to system or 

human errors, duplicate, incorrect, or contextually incorrect values, and failure to record data, as it 

becomes available post factum. 

Errors and Anomalies 

Falsely interpreting anomalous data as expected (normal), or expected data as anomalous, can have 

critical consequences in the medical domain. For that reason, we treat data of suspicious quality as 

anomalous until shown as normal. To formalize this, we define an anomaly as a data that deviates from 

what is standard, normal, or expected [OXF]. Our tasks is then to reliably identify these data deviations 

from normal data. Consequently and beneficially, we can also leverage anomaly detection techniques in 

order to progress towards detection and classification of anomalies as data quality errors. As a first step, 

we taxonomize the anomalies that we encounter into the following standard categories:  
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 Point anomaly:  
A point anomaly is a deviation of a particular data instance from the normal pattern and ranges of 

the dataset. For example, an average, normal blood sugar level is 80 mg/dl when measured in the 

morning, or up to 180 mg/dl postprandial (after meal) [AMI16]; anomalous measurements such 

as 15 or 1000 could likely indicate an error in measurement. Point anomalies can also encompass 

data quality errors such as switched values, randomly inserted values, and missing values since 

these would still fall under the definition of a data instance that deviates from the normal pattern. 

These anomalies are the simplest form of anomalies to detect, and most anomaly detection 

research revolves around detecting point anomalies.  

 Contextual anomaly:  
Contextual anomaly is an instance of data being considered an anomaly in a particular context, 

but not in another context; for example, higher blood sugar measured after a meal would not be 

anomalous due to context [AMI16]. However, high blood sugar in the morning or before a meal 

may be anomalous due to context. Again, this can also encompass data quality errors if a data 

instance is randomly spiked, and it is only detected when it occurs out of context.  

 Collective anomaly:  

Collective anomaly is an anomalous situation when a collection of similar data instances are 

behaving anomalously with respect to the entire dataset. For example, if the blood sugar is high 

for a long period of time, this could indicate an underlying phenomenon; however, one high 

blood sugar measure in itself is not considered anomalous [AMI16]. Again, this can also 

encompass data quality errors. For example, if a machine begins to produce wrong outputs, this 

can be defined as a collective anomaly.  

Interestingly, point anomalies and collective anomalies can be transformed into contextual 

anomalies if there is sufficient context [CBK09]. Thus, in time-series data, we can use time as the 

underlying context for the rest of the data. Therefore, if we can successfully detect contextual 

anomalies with respect to time, then we can simultaneously detect point and collective anomalies. 

With this taxonomy in mind, we proceed to construct our approach for the treatment and detection of 

anomalies in medical datasets.  

BACKGROUND 

The Department of Energy, along with the Oak Ridge National Laboratory, has partnered with the 

Department of Veteran Affairs (VA) in their Million Veteran Program (MVP) [MVP], a voluntary 

research initiative that aims to analyze the largest repository of health care data in the world, which 

includes Electronic Health Records (EHR) for 22.5 million individuals, and genomic data from over 

560,000 Veterans [BKB16]. While this is a true "goldmine" for research, the data inherently carries a 

number of data quality issues and possible errors. One of the problems that have been identified as 

important and critical for advancement of the state of medical research under this initiative is the need for 

timely and accurate detection of data quality anomalies and errors occurring within VA’s Electronic 

Health Records.  

Manifestations and Impacts of Medical Data Errors 

In this work, we choose to systematically understand the data quality errors by first treating them as 

anomalies. We do so because, in practice, it is not always clear whether a new data instance is an error, or 

if it is simply a new observation. Hence, applying automated anomaly detection techniques provides an 

alternative method of detecting unusual variations, and alerting users to what might be an error. Data 

errors, frequently introduced into the EHRs at the point of data entry, propagate through the different 
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stages of clinical procedures and may sometimes directly or indirectly interfere with the patient’s 

therapeutics. One such instance, that could have resulted in wrong medication if not for the acute 

observation of the pharmacist is as quoted in [INS15]: “The patient’s weight was entered as 99kg in the 

EHR system. When pharmacy called the care unit to confirm the weight to dose an antibiotic, the nurse 

stated that the correct weight was 49kg. The correct weight was used to calculate the dose.” This is just 

one illustration; there have been numerous such occurrences, which include transposition of height and 

weight, incorrect age, typographical errors in prescribed drugs and their dosage, ordering for a wrong lab 

test, etc. Some of the error types observed in the EHR are categorized as: [WSF15]  

• Substitution Errors: e.g. substitution timestamps “23:59” instead of 11:59PM.    

• Missing Errors: occurs when end users do not document activities or delete data.    

• Random Errors: random values can occur when values are manually inserted by the clinician.    

• Systematic bias: when a value is shifted due to a system error, e.g. an erroneous computer clock 

that is undetected.    

In some cases, patients were assigned incorrect ICD codes, either on accident, or with the intention of 

falsely increasing the billing for the procedure or treatments performed for the patient. Such errors can 

cost the health care systems billions of dollars either in direct or indirect costs including damages. Andel 

et al., [ADHM12], report that “In 2008, medical errors cost the United States $19.5 billion.”  

While these errors and anomalies can have significant humanitarian or fiscal impacts, detecting them can 

be very challenging due to the complexity of detection.  

Complexity of Detection 

Most anomaly detection techniques only detect point anomalies because it is often too challenging for 

many of the typical algorithms to detect complex, multi-variate, and temporally heterogeneous kinds of 

anomalies. One reason for this is that labeled data typically belongs to healthy or normal patients; thus, 

most techniques must be semi-supervised or unsupervised [CBK09]. Typically, in the process of analysis 

and in order to detect complex anomalies, data scientists need to apply many different techniques for the 

different kinds of possible anomalies: point, collective, and contextual. Moreover, contextual anomalies 

typically require extensive domain expertise to interpret, which can be very time intensive. For instance, 

the patients’ electronic health records (EHRs) consist of temporally dependent data points, meaning that 

time creates an important context to whether a data point is normal or anomalous. For example, very low 

sodium readings for an otherwise healthy patient would be an anomalous state. However, if a patient had 

their large intestine removed in the past, then a low sodium reading for this patient is not as anomalous. In 

this example, we have the temporal context of a past procedure that impacts today’s lab results. A simple 

clustering technique that ignores time would incorrectly label the second patient’s results as anomalous. 

Thus, since time provides a high level of context, it would be a severe loss of information to ignore this 

time as an important variable in anomaly detection. Thus, opportunities exist for better anomaly detection 

techniques in the context of medical data that can detect all three kinds of anomalies mentioned in the 

preceding section. We propose that a neural network based approach to anomaly detection, specifically 

Long-Short-Term-Memory networks, can go a long way towards automatically solving these challenges.  
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A PROPOSED ROLE FOR LONG-SHORT-TERM-MEMORY (LSTM) 

NETWORKS 

Long-Short-Term-Memory networks, or LSTMs, were shown to be effective in automation of some of the 

challenges associated with temporally dependent anomaly detection problems. With that observation in 

mind, and with cognizance of the need for LSTMs to be applied correctly, the goal of the research in 

progress presented in this paper is to leverage LSTMs to detect both data quality errors and the three 

kinds of anomalies described above. Data quality errors such as substitution, missing values, and switched 

values can also be detected because, as previously defined, they stand out as anomalies when compared to 

normal data in large datasets. The unique advantage of LSTMs is that they are capable of ‘remembering’ 

the variable inputs even from the very beginning of a sequence, and they can use these inputs to predict 

sequences much further into the future. Previously, with basic recurrent neural networks (RNNs), while 

processing the streams of data, the network would begin to "forget" about the initial inputs. This problem 

is called the vanishing gradient problem. LSTMs were developed precisely in order to solve these 

problems. More technically, LSTMs have a series of ‘gates’. These gates have functions that decide how 

much of the ‘memory’ or influence of the previous inputs to ‘let through’ or weigh into the calculation for 

the output at a particular time-step. Most LSTMs have at least three of these gates called an input gate, a 

forget gate, and an output gate. Each gate will learn to determine how much information to persist 

through the cell state, or the main information flow in the network [OLA15].  

For example, this means that an LSTM can ‘remember’ that a particular patient had a procedure to 

remove their large intestine; thus, it can learn that low sodium values from that point on are not as 

anomalous as they might appear for average cases. Additionally, when the LSTM predicts a sodium value 

for a different patient who still has their large intestine, the LSTM will learn to use its forget gate to 

’forget’ the previous patient’s unique variables. This means that the fact that the previous patient had their 

large intestine removed would not be taken into account into the prediction for a patient who still has their 

large intestine. We find this helpful type of learning to be much more difficult to automate with other 

adaptive learning algorithms.  

LSTM Architecture 

Neural networks are a way of finding solutions, or function mappings, from x to y. For example, a 

common question asked of a neural network is if given x: a picture of a cat, can we produce y: the text-

label ‘cat’? Instead of explicitly programming software with thousands of rules or functions to pick out 

certain characteristics of a cat, we can provide a program with thousands of examples of labeled cat 

images, so that the program can learn its own rules or functions to label an image successfully.  

The most basic neural network is a feed-forward neural network where the data moves forward in only 

one direction to map one input to one output. Therefore, each input and output pairs are independent of all 

other inputs and outputs. These feed-forward networks work great for classification and regression tasks. 

However, if we have a forecasting task where we want to predict where the sequence will be in the future, 

it is helpful to know where the sequence has been in the past.  

Recurrent neural networks (RNNs) were invented to solve this problem. Recurrent neural networks have 

loops that allows information to persist. However, as previously mentioned, basic recurrent neural 

networks suffer from the vanishing gradient problem.  

LSTMs were invented to solve this problem by retaining the long-term knowledge about some features of 

data.  
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Figure 1: LSTM Architecture (OLA15) 

The core of an LSTM is the cell state, Ct , represented by the horizontal line at the top of the diagram. 

Other than a couple minor interactions, information flows unchanged. However, LSTMs can add or 

remove information to the cell state by the cell gates. These cell gates have corresponding sigmoid layers, 

σ, that output a number between zero and one. While a zero does not allow any information to pass 

through, a one allows all information to pass through. 

The first gate in this LSTM layout is the "forget gate", ft. This gate decides what information is kept or 

discarded from the cell state, and this decision is made by the sigmoid layer. In a diagnosis prediction 

problem, the model may want to factor-in gender and age into the prediction. However, the cell state 

would want to forget the gender and age of the previous patient to make an unbiased prediction for the 

next patient. 

The next gate decides what new information will be stored in the cell state from the input, xt. This two 

part decision includes an “input gate", it, that decides which information will be updated and a tanh layer 

that creates a vector of candidate values, �̃�𝑡, that could be added to the state. In our patient diagnosis 

example, we’ll want to add the gender and age of the new patient to the cell state to replace the old one. 

Finally, the LSTM cell decides what will be output, ht . This is a filtered version of the cell state that 

decides which parts will be output. The filtering of the cell state is done by the tanh function and the 

"output gate", ot , decides how much of the filtered state to let through to the next cell state. For example, 

if the next step in the LSTM is to calculate the risk of a patient having a particular disease, then the output 

of the current cell may be a vector of potential diseases that the patient risks of being affected by.  

There are several variants of the LSTM model; however, for our experiments, we will be using the basic 

architecture as detailed here [OLA15].  

Anomaly Detection with LSTM 

There are two main state-of-the-art techniques for anomaly detection with LSTMs. First is a prediction 

based anomaly detection. The second is an encoder-decoder, or reconstruction based anomaly 

detection[MVSA15]. The aim of our research is to investigate which, if any, of these two techniques will 

work best for the types of problems present in our research.  

 Prediction Based:  
The LSTM learns how to model the normal sequence without any anomalies or errors. We then 
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train the LSTM to successfully predict the next sequence. This prediction can then be tested on an 

erroneous sequence. To detect the anomaly, the error between the prediction and the data instance 

is measured. If the difference is large, with the gap either arbitrarily or analytically assigned, the 

data can be classified as a potential anomaly. 

 Reconstruction Based:  
The LSTM learns how to encode a sequence into a smaller representation of the data and decode, 

or reconstruct, the exact sequence successfully. In order to detect anomalies, the idea is that when 

the LSTM does poorly at reconstructing a sequence, then this must be a sequence it has not been 

seen before. If the model has not seen this sequence before, then it can be classified as a potential 

anomaly. 

Our aim is to test how well an LSTM can detect anomalies, including potential data quality errors, in 

typical medical data using both strategies.  

APPROACH FOR LSTM-BASED DETECTION 

The following section describes preliminary results on using the LSTM- based model for temporally and 

contextually sensitive anomaly detection in medical datasets.  

We use LSTM models to detect anomalies in a given progression of m variables that constitute data for a 

patient. Formally, this is a multi-variate time series 𝑆 =  {𝑠(1), 𝑠(2), ⋯ , 𝑠(𝑛)}, where 𝑠(𝑡) ∈  𝑅𝑚  that is 

observed at time t. 

For a prediction based approach, we construct an LSTM model that learns to predict a sequence of the 

next l vectors when a vector 𝑠(𝑖) is presented to the model, where 1 ≤ l ≤ n . Formally, let us define such l 

sequences of m variables given 𝑠(𝑖) as {�̃�𝑖
(𝑖+1)

, �̃�𝑖
(𝑖+2)

, ⋯ , �̃�𝑖
(𝑖+𝑙)

}. Consequently, for a vector 𝑠(𝑖) ∈  𝑆, this 

model generates error prediction vectors {�̃�𝑗
(𝑖)

, �̃�𝑗+1
(𝑖)

, ⋯ , �̃�𝑗+𝑙
(𝑖)

}, if  l  ≤ i ≤ 𝑛 − 𝑙. This error is computed by 

calculating the difference between the prediction and the actual value.  A set of such prediction vectors is 

used to assess the likelihood of 𝑠(𝑖) being an anomaly [MVSA15]. 

For the reconstruction based approach, we construct a slightly different LSTM model that learns to 

reconstruct 𝑠(𝑖) when presented 𝑠(𝑖) itself. This reconstruction is completed by an encoder-decoder 

strategy whereby 𝑠(𝑖) is encoded into a vector representation and decoded into a reconstruction of 𝑠(𝑖) .  

Again, this model generates error prediction vectors {�̃�𝑗
(𝑖)

, �̃�𝑗+1
(𝑖)

, ⋯ , �̃�𝑗+𝑙
(𝑖)

}, if l  ≤ i ≤ 𝑛 − 𝑙. This error is 

computed by calculating the difference between the reconstruction of  𝑠(𝑖) and the actual values belonging 

to 𝑠(𝑖)  and the set of prediction vectors is used to assess the likelihood of 𝑠(𝑖) being an anomaly 

[MRA16]. 

Stacked LSTM Prediction Based Model 

The following LSTM network architecture is used as described in [MVSA15]: In order for the 

architecture to learn higher level temporal features, we stack LSTM layers. This means that each layer is 

fully connected to the layers above through feed forward connections. 
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Figure 2: Stacked LSTM Architecture 

Data and Experiments 

Our current approach to the evaluation of LSTMs involves the use of a realistic, "clean", medical dataset 

which is inserted with errors of our choosing to assess the detection power and flexibility of the LSTM 

approach.  

Medical Information Mart for Intensive Care Database (MIMIC) 

Given the variety of anomalies that could occur in the EHR’s, we have identified one such source of 

system errors in the bedside monitoring devices. In this project, we analyze time series signals such as 

heart rate, systolic blood pressure, diastolic blood pressure, and respiration rate. Using these signals, we 

aim to detect the device errors present in them.  

We start with a default, standard dataset to train, and an algorithmically altered erroneous dataset to test. 

The training dataset will simply be the lab results of over 40,000 real patients from the Medical 

Information Mart for Intensive Care (MIMIC-III) database [JPS16]. These lab result files are CSV files 

that include all the sequentially ordered lab results the patient received during an ICU stay.  

Error Insertion 

Since the MIMIC III data that is used in training the neural network model is devoid of anomalies and is 

considered to be normal data, we represent the anomalous behavior of the EHR by adding random data 

into the otherwise normal data. Since: (i) the nature of an anomaly in the EHR is not yet well established 

and (ii) accounting for all anomalous behaviors is a substantial task, we focus on the following strategies 

for introducing errors into the bedside monitoring signals: 

 Random Errors: we add errors at 2%, 4%, and 7% of the dataset. For each of these error 

instances, the error is calculated by increasing or decreasing the existing value by 50%, 75%, and 

100%. 

 Mismatch Errors: where we randomly switch values, e.g., diastolic/systolic, at 2%, 4%, and 7% 

of the dataset. 

 Missing Errors: where we delete values at 2%, 4%, and 7% of the dataset. 

Based on probability estimates, either continuous errors or point errors are added to the time series. 

Depending on how our predictive model performs on this set, more complex strategies can be devised as 

well. 

Anomaly Detection Using the Prediction Error Distribution 

The following anomaly detection technique is applied as described by [MVSA15]: We compute an error 

vector that is the difference between the prediction of 𝑠(𝑖)  at the next time step and the true value at 𝑠(𝑖). 

The error vectors are fit to a multivariate Gaussian distribution  = (μ, Σ). An observation is classified 

as anomalous if the prediction is less than 𝜏, else the observation is classified as normal. The normal 
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validations tensors are used to learn τ by maximizing the F-score. This method assigns positive scores to 

anomalous points and negative scores to normal points [MVSA15].  

 

Evaluation 

In order to evaluate how well the LSTM performs at correctly detecting these errors, we can use a 

confusion matrix that compares our true and false positive rate and compares our true and false negative 

rate. These rates will provide the model’s accuracy, precision, and recall metrics. We will test both 

anomaly detection strategies, prediction based and reconstruction based, with an LSTM, but we will also 

test common regression and control chart methods. These methods will serve as a baseline to compare the 

performance of the LSTM-based approach. Note however, implementation of a reconstruction based 

strategy is still being researched. More detail on this strategy is provided in the next section.  

During testing of these models, the most challenging aspect of anomaly detection in the medical domain 

is that there is a very high cost in classifying an anomaly as normal. As previously mentioned, undetected 

anomalies and data errors can have a significant negative impact on the patient’s health. Thus, we will be 

optimizing our models for recall, or true labeled positives divided by all positives. This will ensure we 

detect as many positives as possible. While regression and control charts will be easier to implement and 

may even detect many anomalies, our prediction is that the LSTM will significantly outperform 

regression and control charts in detecting the largest percent of anomalies.  

Preliminary Results 

 

Figure 3: Preliminary results (sample sequences: green, predictions: blue, MSE: red) 

The preliminary results are promising as they show the LSTM is learning a predictive model of the 

sequences. These predictions are compared with the original sequence in order to calculate the mean 

squared error. This error is currently interpreted as the probability of an anomaly. However, in the future, 

the mean squared error, or error vectors, will be fit to a Gaussian distribution in order to calculate a 

likelihood threshold for a potential anomaly, as previously stated. This is important since the normal data 

may have subsequences that appear anomalous simply due to the nature of the ICU data but in fact are 

normal.  
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ONGOING RESEARCH AND EXPECTED OUTCOMES 

Parts of this research are still ongoing as there are a few challenges that must be addressed before 

experimental results can be produced. Anticipated challenges include: a) handling missing values, b) 

implementing a reconstruction based LSTM, and c) figuring out how to incorporate more data into the 

models such as demographic and diagnosis information.  

Missing Values 

Since the MIMIC-III dataset consists of real ICU events of real patients, the data is very sparse. Not all 

lab results are always taken at each time step, and most patients have a varying length of stay. While 

some health indicators, such as the heart rate, are monitored constantly, some other,  such as the glucose 

level, are measured for less than 50% of the time steps. To overcome the sparseness in the data, we will 

initially use imputation strategies that provide a reasonable estimate for the missing data. The records that 

have more than 50% missing values are not considered in our experiment. The strategy to account for the 

missing values is to calculate the mean of the existing data, and assume it to be the reasonable prediction 

for the missing data. In order to overcome the fact that most of the patients have a varying length of stay, 

we will implement dynamic batch padding to process different time series lengths. Initially, we will test if 

padding the time series with zeros will be effective in our models.  

However, using naive imputation strategies to ’fill in the gaps’ can result in loss of information. As 

previously mentioned, one of our goals is to determine whether a missing, or randomly deleted value, is 

anomalous. Obviously if the values are imputed to become the mean of the surrounding values, 

determining whether a missing value is anomalous becomes impossible. However, missing values are not 

always predictable. Thus, the prediction based LSTM may not work in predicting missing values. 

However, according to recent research by [MRA16], reconstruction based LSTM can perform much 

better in finding unpredictable anomalies in predictable or unpredictable sequences.  

 

Reconstruction Based LSTM Anomaly Detection 

Leveraging a reconstruction based LSTM for anomaly detection is still an ongoing part of our research. 

The benefit of this strategy is that it is robust to predictable and unpredictable series. Thus, this strategy 

could be leveraged in order to find anomalies in sequences that may not be predictable, or such sequences 

that include randomly missing values. We predict that we will need to implement a reconstruction based 

LSTM in order to detect anomalously missing values.  

The goal with this strategy is for the LSTM to encode a vector representation of a sequence and learn to 

successfully reconstruct the sequence from the vector representation. The difference between 

reconstruction and the original sequence is the error. Thus, if this model is trained on normal data, then 

the reconstruction error will be low for a normal, or expected sequence. However, the error will be high 

on sequences the model has never ’seen’ before. These high errors could be classified as potential 

anomalies [MRA16].  

Part of the ongoing research with a reconstruction based LSTM is finding the optimum window size for 

the model. The window size is the length of the sequences used as input. If an important variable is 

missing, this could lead to a large error during reconstruction. The goal is to provide a clear ’picture’, or 

window, to the model in order to provide not only sufficient information for reconstruction, but also serve 

as a valid representation of a normal state.  
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Incorporating Additional Data 

Another challenge we are trying to address is how to incorporate additional information and features into 

our models. Potentially, the more data we can use, the better our models will perform and, potentially, the 

faster our models will train. The features we initially aim to incorporate into the model for analysis are 

demographic, diagnosis, and procedural information. Incorporating these features can have a huge impact 

on predictions because lab results can be drastically different based on age, gender, diagnosis, and past 

procedures. However, the biggest challenge is how to blend these discrete and continuous variables into a 

single form the LSTMs will accept and understand. Initially, we are testing a basic method of doing this. 

Since demographic, diagnosis, and procedural data change with time, a basic method of incorporating this 

would be adding these data to each time series. For example, we would extend the rows of lab values to 

include a one hot encoding of comorbidities. Thus, the diagnosis information would be tracked by the 

granularity of the time series. Similarly, we would also extend these rows to include demographic 

information that would be tracked over time. Hence, at any given time series the row would encompass 

the state of the patient as a whole. Of course, as the number of patients and time series events grow, this 

can become memory intensive since we are copying the same information over and over. However, while 

we research better methods, this can be a basic way of including more information into our 

anomalous/normal predictions.  

FUTURE AND RELATED WORK 

Our current research, reported in this paper, inspired us to look further into other potential outcomes that 

could contribute to the state-of-the-art in the data quality, and anomaly detection for medical data 

research. We have identified three relevant areas, namely: i) health data quality benchmarking, ii) 

detection of inconsistencies between structured and textual data, and iii) use of memory augmented 

networks.  

A Need for a Health Data Quality Benchmark 

We have seen dramatic progress in machine learning algorithms in a variety of applications. These 

algorithms are advancing the state-of-the-art in image classification, text mining, speech recognition, and 

more. Catalysts for these advancements include community recognized benchmarks such as ImageNet 

Large Scale Visual Recognition Challenge [RDS15]. These benchmarks allow researchers to improve 

model performance while competing with the community on very specific tasks. This focus fosters 

collaboration and advances progress. Until recently, the health care domain has lacked community 

accepted datasets and benchmarks to test domain-specific machine learning algorithms. In 2016, 

YerevaNN, a non-profit computer science and mathematics research lab, published four benchmarking 

tasks for the Medical Information Mart for Intensive Care (MIMIC- III) database [HKKG17]. They 

propose the MIMIC-III database to be a standard benchmarking database for machine learning research 

for health care. Using the MIMIC-III database for bench- marking solves a big issue in health care related 

research. Researchers at YerevaNN have published four benchmarks each on different tasks regarding 

mortality prediction, decompensation prediction, length of stay forecasting, and acute care phenotyping. 

They even produced a multitask LSTM architecture to solve all four tasks simultaneously. YerevaNN is 

already leveraging these LSTM architectures with impressive prediction benchmarks on temporally 

dependent medical data [HKKG17].  

Our goal is to contribute to YerevaNN’s effort and create the first anomaly detection benchmark for the 

publicly available MIMIC-III database. Initially, we are focusing our efforts on lab results and detecting 

data quality anomalies such as impossible values, switched values, and erroneously inserted values. Not 
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only does this focus serve as a proof-of-concept for more complex tests, but it is also immediately 

valuable for a health care organization. However, we would like to expand this effort to include a wider 

range of data provided by the MIMIC-III database such as demographic information, comorbidities, and 

more. By incorporating as much data as possible from the MIMIC-III dataset, we will be able to provide a 

true anomaly detection benchmark for others to challenge. Perhaps LSTMs will be flexible enough to 

incorporate this additional data when detecting anomalies and data errors and will serve as a standard for 

anomaly and error detection in medical data.  

Detecting Textual and Structured Data Inconsistencies 

Another area for future work is incorporating physician notes into the anomaly detection models. This 

area of work would aim to address the problem when textual and structured data is inconsistent. For 

example, there were cases in EHRs where the doctor’s notes and the information found in the structured 

data were either just slightly different or completely contradictory. One source for these errors is the use 

of copy and paste in EHRs. In order to save time, physicians can copy the notes from a previous visit into 

the notes of the current visit. This happens especially when the visits are regarding the same diagnosis. 

However, a problem that occurs is that certain parts of the notes including medication dosage are 

mistakenly not changed. It has been found in situations where patients almost underwent the same 

procedure twice simply because the exact same notes were entered for a follow up visit [HOF14]. We 

posit that natural language processing strategies could be incorporated into a model that compares the free 

form notes with the structured information in order to determine a match score. If the match score is high, 

then there is no error. However, if the match score is low then the data would need to be reviewed by a 

clinician. This kind of automation would significantly reduce these textual and structured data 

inconsistencies that can arise in EHRs.  

A Role for Memory Augmented Networks 

Another area for future work consists in adding more learning power and generality to the LSTM or other 

neural network. We propose a future model structure for anomaly and error detection such as a memory 

augmented network [GWR16]. Instead of the LSTM only relying on its own internal memory, the LSTM 

can be given read and write capabilities to an external memory. This external memory would serve as a 

sort of random access memory to the LSTM, or other model, that serves as a controller. Not only could 

this allow a model to be tailored specifically to a patient, but this model could also provide a layer of 

reasoning. This reasoning layer could be used for dynamic cohort creation, for example [RHD16]. 

Concretely, the external memory could be queried similarly to an SQL query. For example, we could ask 

the memory to display all patients with rheumatoid arthritis that have anomalies in their EHR. Or, display 

which clinicians have inserted the most anomalies, or data quality errors, into an EHR.  

CONCLUSION 

The EHR system allows us to maintain a single source of truth of patients’ records. However, the 

introduction of the electronic format for the health records has also introduced a plethora of data quality 

issues. Since medical data is complex, voluminous, and it has one of the highest costs for undetected 

anomalies, reliable automated approaches for detecting these data quality issues are critical. To address 

these problems, we are exploring state-of-the-art anomaly detection techniques for time series based or 

time-dependent medical data, specifically LSTM. We will examine which particular LSTM-based 

anomaly detection technique works best – either the prediction based or the reconstruction based – and we 

will present our findings in upcoming publications. Our expectation is that LSTM-based approaches will 

not only outperform common statistical techniques, such as regression and control charts, but will also be 

the most flexible for addressing new problems.  
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