Heritability

The concept
What is the Point of Heritability?

- Is a trait due to nature or nurture?
 - (Genes or environment?)
- You and I think this is a good point to address, but it is *not* addressed!
- What is addressed is:

 Is *variation* in a trait due to nature or nurture?

 - (review: genes, environment, nature, nurture — which are more synonymous)
What is the Point of Heritability?

• Is a trait due to nature or nurture?
 vs.
• Is variation in a trait due to nature or nurture?

• Which is better for what purposes?
• How can these be investigated?
• Why is variation used with heritability in the technical sense?
It's not that Intuitive …

• Does # fingers have
 - High heritability, or
 - Low heritability?
It's not that Intuitive …

- Let's look at the genomes of some organisms that
 - know a lot about bioinformatics, and
 - know very little about bioinformatics
Is knowledge of bioinformatics highly heritable?

Sample organisms that know a lot about bioinformatics

Sample organisms that know little about bioinformatics

Is knowledge of bioinformatics highly heritable?
Break Phenotypic Variance into Two Parts

- \(S_p^2 = S_e^2 + S_g^2 + 2\text{cov}(e, g) \)

- If we can assume \(e \) and \(g \) are independent...

- \(S_p^2 = S_e^2 + S_g^2 \)

- Can we assume independence?
- Which variable(s) do we solve for?
Some Statistical Background

• What is the variance of a single coin toss?
 - \(S^2 = \)
 - Expectation of squared deviation from the mean
 - Let's work it out …

 (& keep results on board for later reference)
Some Statistical Background

- What is the variance of a double coin toss?
 - $S^2 =$
 - Expectation of squared deviation from the mean
 - Let's work it out ...
Some Statistical Background

- What is the covariance of a double coin toss -
 - if the tosses are independent
 - If the tosses are completely dependent
 - Covariance = (x-e(x))*(y-e(y))
 - (this expression is part of the formula for Pearson correlation)
 - Let's work it out ...
Some Statistical Background

• What is the variance of a double coin toss?
• \((2^{\text{nd}} \text{ coin carefully set to be same as } 1^{\text{st}})\)
 - \(S^2 = \)
 - Expectation of squared deviation from the mean
 - Let's work it out ...
Phenotypic variation due to variation in
- genotype
- environment

Top speed of rat when approached by massage therapist
Break Phenotypic Variance into its Two Parts

- \(S_p^2 = S_e^2 + S_g^2 + 2\text{cov}(e, g) \)

- If we can assume \(e \) and \(g \) are independent...

- \(S_p^2 = S_e^2 + S_g^2 \)

- Can we assume independence?
- Which variable(s) do we solve for?
Defining Heritability (H^2)

• The fraction of phenotypic variance arising from genotypic variance

• Using $S_p^2 = S_e^2 + S_g^2$...
 - What would the formula for heritability be?
Defining Heritability (H^2)

- The fraction of phenotypic variance arising from genotypic variance
 - Griffiths et al.: this is "broad sense heritability"

- Using $S_p^2 = S_e^2 + S_g^2$...
 - What is the formula for (broad) heritability?
Narrow Sense Heritability

• Broad sense heritability: H^2
• S_g^2 / S_p^2
 • (where $S_p^2 = S_e^2 + S_g^2$)
• There is also narrow sense heritability
 • S_a^2 / S_p^2, $S_g^2 = S_a^2 + S_d^2 + S_i^2$
 - a for additive, d for dominance, i for interactive genetic variance

- Which is higher, broad or narrow sense heritability?
Narrow Sense Heritability (ii)

- There is also narrow sense heritability
 \[\frac{S_a^2}{S_p^2}, \quad S_g^2 = S_a^2 + S_d^2 + S_i^2 \]
 - a for additive, d for dominance, i for interactive genetic variance

- Variances due to genetic differences adds by “default”
 - (many genes act more or less independently)
Narrow Sense Heritability (ii)

- There is also narrow sense heritability

\[\frac{S_a^2}{S_p^2}, \quad S_g^2 = S_a^2 + S_d^2 + S_i^2 \]

- a for additive, d for dominance, i for interactive genetic variance

- Variances when one gene is dominant do not add

- Some genes affect one another in other ways

 - *i* for “epistatic” (actually for “interactive”)
Back to Broad Sense
Heritability (H^2)

- Let's apply this concept to twin studies
 - See http://en.wikipedia.org/wiki/Twin_study
 - See http://en.wikipedia.org/wiki/Falconer\'s_formula
 - See review paper:
 http://d.yimg.com/kq/groups/20928795/253004760
Broad sense heritability: H^2

- S_g^2 / S_p^2

 - (where $S_p^2 = S_e^2 + S_g^2$)

- “… heritability in one population does not, in theory, predict the heritability of the same trait in another population”

- Why?

- But in practice, the heritabilities are often similar

 - Exception: heritability often is higher in good environments
Application: Artificial Selection

- S_g^2 / S_p^2

 - (where $S_p^2 = S_e^2 + S_g^2$)

- We want higher yielding corn, more milk from cows, faster (more efficient) meat growth

 - Surely growing meat in a vat is potentially even more efficient...)

- This leads to the breeder's equation
Breeder's Equation

- $R = h^2 \times S$
 - R—response to selection
 - (change in phenotypic mean from parents to offspring)
 - S—selection differential
 - (deviation from phenotypic mean of the average of the parents)
Selection, heritability, and environment

- Heritability tends to be higher in good environments
- See Figure 1 in Visscher et al.
 - Bird tarsus length:
 - $h^2 = \text{about 0.6 in a good environment}$
 - about 0.4 in a poor one
- Various other cases
Another way to determine heritability

- See figure 2 in Visscher et al.
 - Graph R vs. S
 - Draw a regression line
 - Slope is the heritability
- Error around regression line in the figure is higher for the low heritability case
 - Why?
 - Is this intrinsic?
Twin Study Heritability (H^2)

- Compare identical twins (monozygotic) with fraternal twins (dizygotic)
 - Fraternal twins must have the same gender

- We'll transfer the variance idea to correlation
 - Closely related concepts –
 - The Pearson correlation definition uses variance
Twin Study Heritability (H^2)

- Identical twins – monozygotic – mz
- Fraternal twins – dizygotic – dz
- Correlation values go from 0 (none) to 1 (high)
 - Measure the correlation of a trait among MZ
 - Part of it is due to genetics (A)
 - Part of it is due to shared environment C
 - $r_{mz}=A+C$
 - Measure the correlation of the trait among DZ
 - $r_{dz}=A/2 + C$
 - ...since they share half their genes
Twin Study Heritability (H^2)

- Identical twins – monozygotic – mz
- Fraternal twins – dizygotic – dz
- Correlation values r go from 0 (none) to 1 (high)
 - Amount of correlation due to genetics (A)
 - Amount due to shared environment (C)
 - $r_{MZ}=A+C$ $r_{DZ}=A/2 + C$
 - Now we can (easily) solve for A!
Twin Study Heritability (H^2)

- Identical twins – monozygotic – mz
- Fraternal twins – dizygotic – dz
- Correlation values r go from 0 (none) to 1 (high)
 - Effect on the results of differing environments is E
 - Even identical twins always have differing environments (like what?)
 - If E was 0, r_{mz} would be 1 (why?)
 - So $E=1-r_{mz}$
- We've now solved for A and E, but not yet C
Twin Study Heritability (H^2)

- Identical twins – monozygotic – mz
- Fraternal twins – dizygotic – dz
- Correlation values r go from 0 (none) to 1 (high)
 - Recall $r_{mz} = A + C$
 - So $C = r_{mz} - A$
- We've now solved for
 - Genetic contribution to correlation
 - Shared environmental contribution
 - Correlation missing due to differing environment
What Heritability Tells Us

- It says how much of the variation in phenotype is due to genetic variation
 - Is this about groups, individuals, or both?
- Does it say anything about causality?
- Are 9 of your fingers from genes, 1 from environment?
- Is 50% of your longevity from genes, 50% from environment?
What Heritability Tells Us

● Suppose phenotypic variance is greater in more genetically diverse groups
 - Does this mean genes influence the trait in question?

● Suppose phenotypic variance is the same for groups of different genetic diversity
 - Does this mean genes do not influence the trait in question?
What Heritability Tells Us

• Suppose phenotypic variance is greater in more genetically diverse groups
 − Does this mean genes influence the trait in question?
 • Yes

• Suppose phenotypic variance is the same for groups of different genetic diversity
 − Does this mean genes do not influence the trait in question?
 • Recall the # fingers example
 • Another case: genetic diversity was 0
What Heritability Tells Us

- "In general, the heritability of a trait is different in each population and in each set of environments [sic]; it cannot be extrapolated from one population and set of environments to another." - Griffiths et al., 2000
What Heritability Tells Us

- Can genes be relevant to a trait, and genetic variance be irrelevant to trait variance?

- Can genes be irrelevant to a trait, and genetic variance be relevant to trait variance?
What Heritability Tells Us

• Suppose variations in a gene matter in one environment but not another
 – Human blood type?

• Then genotypic variance (e.g. in blood type)
 – Statistically "explains" variance in health/death
 • More in one environment than the other
 • Health/death is more heritable in one environment than the other!

• So heritability is very relative
• The number has little intrinsic meaning if someone calculates that, for example,
 – Intelligence has a heritability of 0.4 (or whatever)
What Heritability Tells Us

- Griffiths et al.: "Summary measures such as H^2 are not first steps toward a more complete analysis and therefore are not valuable in themselves."

Vissher et al.:
- “...it allows … *comparison* of the same trait across populations and of different traits within a population.”
- (Emphasis added)
What Heritability Tells Us

- Vissher et al.:

 “... heritability remains key to the response to selection in evolutionary biology and agriculture, and to the prediction of disease risk in medicine.”
Note to instructor: add more points from Visscher paper as noted in hard copy starting from p. 261 except fig. 2 already discussed herein