Authors: Hind J. Jawad, Mustafa Sarimollaoglu, Alexandru S. Biris, and Vladimir P. Zharov
Publication: Biomed Opt Express. 2018 Oct 1; 9(10): 4702–4713. Published online 2018 Sep 10. doi: 10.1364/BOE.9.004702
Abstract:
In vivo photoacoustic (PA) flow cytometry (PAFC) has great clinical potential for early, noninvasive diagnosis of cancer, infections (e.g., malaria and bacteremia), sickle anemia, and cardiovascular disorders, including stroke prevention through detection of circulating white clots with negative PA contrast. For clinical applications, this diagnostic platform still requires optimization and calibration. We have already demonstrated that this need can be partially addressed by in vivoexamination of large mouse blood vessels, which are similar to human vessels used. Here, we present an alternative method for PAFC optimization that utilizes novel, clinically relevant phantoms resembling pigmented skin, tissue, vessels, and flowing blood. This phantom consists of a scattering-absorbing medium with a melanin layer and plastic tube with flowing beads to model light-absorbing red blood cells (RBCs) and circulating tumor cells (CTCs), as well as transparent beads to model white blood cells and clots. Using a laser diode, we demonstrated the extraordinary ability of PAFC to dynamically detect fast-moving mimic CTCs with positive PA contrast and white clots with negative PA contrast in an RBC background. Time-resolved detection of the delayed PA signals from blood vessels demonstrated complete suppression of the PA background from the modeled pigmented skin. This novel, medically relevant, dynamic blood flow phantom can be used to calibrate and maintain PAFC parameters for routine clinical applications.